

    
      
          
            
  
CDR package documentation

Documentation for the cdr Python package.
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Introduction

[image: _images/rtdbanner.png]
In many real world time series, events trigger “ripples” in a dependent variable that unfold slowly and overlap in time (temporal diffusion).
Recovering the underlying dynamics of temporally diffuse effects is challenging when events and/or responses occur at irregular intervals.
Continuous-time deconvolutional regression (CDR) is a regression technique for time series that directly models temporal diffusion of effects (Shain & Schuler, 2018, 2021).
CDR uses machine learning to estimate continuous-time impulse response functions (IRFs) that mediate between predictors (event properties) and responses.
Given data and a model template specifying the functional form(s) of the IRF kernel(s), CDR finds IRF parameters that optimize some objective function.
This approach can be generalized to account for non-stationary, non-linear, non-additive, and context-dependent response functions by implementing the IRF as a deep neural network (Shain, 2021).

The cdr package documented here provides a Python implementation of a general-purpose CDR framework that allows users to flexibly select among neural network and kernel-based approaches to continuous-time deconvolution, and even to combine both approaches within a single model.
This package provides (1) an API for programming with CDR(NN) and (2) executables that allow users to train and evaluate CDR(NN) models out of the box, without needing to write any code.
Source code and bug reporting tools are available on Github [https://github.com/coryshain/cdr].


Installation (PyPI)

Install python [https://www.python.org/], then install CDR(NN) using pip as follows:

pip install cdrnn





Note that, despite the package name, both (kernel-based) CDR and (deep-neural) CDRNN are both implemented by the same codebase, so both kinds of models can be fitted using this package.



Installation (Anaconda)

Install anaconda [https://www.anaconda.com/] and clone the CDR repository (https://github.com/coryshain/cdr) to the directory of your choice.
From the CDR repository root, run the following commands to create a new conda environment:

conda env create -f conda_cdr.yml
conda activate cdr





(Optional) Run the following from the CDR repository root to install CDR system-wide (otherwise, simply run CDR from the repository root):

python setup.py install





The cdr environment must first be activated anytime you want to use the CDR codebase:

conda activate cdr







Basic Usage

Once the cdr package is installed system-wide as described above (and the cdr conda environment is activated via conda activate cdr), the cdr package can be imported into Python as shown:

import cdr





Most users will not need to program with CDR(NN), but will instead run command-line executables for model fitting and criticism.
These can be run as:

python -m cdr.bin.<EXECUTABLE-NAME> ...





For documentation of available CDR(NN) executables, run:

python -m cdr.bin.help( <SCRIPT-NAME>)*





CDR(NN) models are defined using configuration (*.ini) files (fully described in CDR Configuration Files), which can be more convenient than shell arguments for specifying many settings at once, and which provide written documentation of the specific settings used to generate any given result.
For convenience, we have provided a utility to initialize a new *.ini file, which can be run like this:

python -m cdr.bin.create_config > PATH.ini





This will initialize a CDR-oriented config file.
To initialize a CDRNN-oriented config file, add the flag -t cdrnn.
To initialize a plotting-oriented config file (which defines visualizations to run for an already fitted model), add the flag -t plot.
To include annotation comments in the output file (which can help with customizing it), add the flag -a.
The PATH.ini file can then be modified as needed to set up the analysis.

CDR model formula syntax resembles R-style model formulas (DV ~ IV1 + IV2 + ...) and is fully described in CDR Model Formulas.
The core novelty is the C(preds, IRF) call (C for “convolve”), in which the first argument is a ‘+’-delimited list of predictors and the second argument is a call to an impulse response kernel (e.g. Exp, Normal, ShiftedGammaShapeGT1, see CDR Model Formulas for complete list).
For example, a model with the following specification:

formula = DV ~ C(a + b + c, Normal())





will fit a CDR model that convolves predictors a, b, c using Normal IRFs with trainable location and scale parameters.

CDRNN models do not require user-specification of a kernel family, so their formula syntax is simpler:

formula = DV ~ a + b + c





The response shape to all variables (and all their interactions) will be fitted jointly.

Once a model file has been written (e.g. model.ini), the model(s) defined in it can be trained by running:

python -m cdr.bin.train model.ini





IRF estimates will be incrementally dumped into the output directory specified by model.ini,
and learning curves can be inspected in Tensorboard:

python -m tensorboard.main --logdir=<PATH-TO-CDR-OUTPUT>







References
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Getting Started

The cdr package provides utilities that support easy training and evaluation of CDR models.
Most of these utilities depend on a config file *.ini containing metadata needed to construct the CDR model(s).
At training time, a copy of the config file is placed in the output directory for the experiment, which can be useful for record keeping.
The approach of using config files rather than command line arguments to define experiments has several advantages:


	Users only need to define the experiment once, and settings can be reused for arbitrarily many models


	The config file contains a permanent record of the settings used in the experiment, facilitating later reproduction


	The config file can be shared across many utilities (training, evaluation, statistical testing, plotting, etc.)




This guide describes how to write the config file and use it to train and evaluate CDR models.


Configuring CDR Experiments

A set of CDR experiments is definied in a config file *.ini, which can then be passed to CDR executables ().
For example, once a config file foo.ini has been created, the models defined in it can be trained using the included train executable, like this:

python -m cdr.bin.train foo.ini





The config file must at minimum contain the sections [data] (with pointers to training/evaluation data) and [global_settings] (with the location of the output directory).
A section [cdr_settings] can be (optionally) provided to override default settings.
In addition, the config file should contain at least one model section, consisting of the prefix model_ followed by a custom name for the model.
For example, to define a model called readingtimes, use the section heading [model_readingtimes].
The identifier readingtimes will then be used by a number of utilities to designate this model.
The data and settings configurations will be shared between all models defined a single config file.
Each model section heading should contain at least the field formula.
The value provided to formula must be a valid CDR model string.
Additional fields may be provided to override inherited CDR settings on a model-specific basis.
Experiments involving distinct datasets require distinct config files.

For more details on the available configuration parameters, see CDR Configuration Files.
For more details on CDR model formulae, see CDR Model Formulas.
To jump-start a new config file, run:

python -m cdr.bin.create_config > config.ini





Add the flag -a to include annotations that can help you fill in the fields correctly.



Running CDR executables

A number of executable utilities are contained in the module cdr.bin and can be executed using Python’s -m flag.
For example, the following call runs the train utility on all models specified in a config file config.ini:

python -m cdr.bin.train config.ini





Usage help for each utility can be viewed by running:

python -m cdr.bin.<UTIL-NAME> -h





for the utility in question.
Or usage help for all utilities can be printed at once using:

python -m cdr.bin.help





The following sections go into more detail about training and evaluation utilities that will likely be useful to most users.



Training CDR Models

First, gather some data and write a config file defining your experiments.
Data must be in a textual tabular format.
CSV format is assumed; to specify the delimiter, use the sep field in your config file.
Once the config file has been written, training a CDR model is simple using the train utility, which takes as its principle argument a path to the config file.
For example, if the config file is names experiment.ini, all models defined in it can be trained with the call:

python -m dstr.bin.train experiment.ini





To restrict training to some subset of models, the -m flag is used.
For example, the following call trains models A and B only:

python -m cdr.bin.train experiment.ini -m CDR_A CDR_B





CDR periodically saves training checkpoints to the model’s output directory (every save_freq training epochs, where save_freq can be defined in the config file or left at its default of 1).
This allows training to be interrupted and resumed.
To save space, checkpoints overwrite each other, so the output directory will contain only the most recent checkpoint.
If the train utility discovers a checkpoint in the model’s output directory, it loads it and resumes training from the saved state.

CDR learning curves can be visualized in Tensorboard.
To run Tensorboard for a CDR model called CDR_A saved in experiment directory EXP, run:

python -m tensorboard.main --logdir=EXP/CDR_A





then open the returned address (usually http://<USERNAME>:6006) in a web browser.



Evaluating and Testing CDR Models

This package provides several utilities for inspecting and evaluating fitted CDR models.
The principal evaluation utility is predict.
The following generates predictions on test data from the model CDR_A defined in experiment.ini:

python -m cdr.bin.predict experiment.ini -m CDR_A -p test





This call will save files containing elementwise predictions, errors, and likelihoods, along with a performance summary.
For more details on usage, run:

python -m cdr.bin.predict -h





Once predict has been run for multiple models, statistical model comparison (permutation test) can be performed using test, as shown:

python -m cdr.bin.test experiment.ini -p test





The above call will permutation test pairwise differences in mean squared error on test data for all unique pairs of models defined in experiment.ini.
For more details on usage, run:

python -m cdr.bin.test -h





To compare a specific pair of models (e.g. A and B), use the -m flag:

python -m cdr.bin.test experiment.ini -p test -m A B





This kind of statistical model comparison is the foundation of hypothesis testing with CDR(NN)s.
If model A above represents the null hypothesis (e.g. excludes predictor P) and model B represents the alternative (e.g. includes predictor P), then the test will give a p value for the effect of P (namely, does including P in the model improve fit to the test set?).

In addition to these core utilities, convolve convolves the input predictors using the fitted CDR data transform and saves the data table, and plot generates IRF plots with basic customization as permitted by the command line arguments.





            

          

      

      

    

  

    
      
          
            
  
CDR Configuration Files

The CDR utilities in this module read config files that follow the INI standard.
Basic information about INI file syntax can be found e.g. here [https://en.wikipedia.org/wiki/INI_file].
This reference assumes familiarity with the INI protocol.

CDR configuration files contain the sections and fields described below.


Section: [data]

The [data] section supports the following fields:

REQUIRED


	X_train: str; Path to training data (predictor matrix)


	y_train: str; Path to training data (response matrix)


	series_ids: space-delimited list of str; Names of columns used to define unique time series




Note that, unlike e.g. linear models, CDR does not require synchronous predictors and responses, which is why separate data objects must be provided for each of these components.
If the predictors and responses are synchronous, this is fine.
The X_train and y_train fields can point to the same file.
The system will treat each unique combination of values in the columns given in series_ids as constituting a unique time series.

OPTIONAL


	X_dev: str; Path to dev data (predictor matrix)


	y_dev: str; Path to dev data (response matrix)


	X_test: str; Path to test data (predictor matrix)


	y_test: str; Path to test data (response matrix)


	history_length: int; Length of history window in timesteps (default: 128)


	filters: str; List of filters to apply to response data (;-delimited).




All variables used in a filter must be contained in the data files indicated by the y_* parameters in the [data] section of the config file.
The variable name is specified as an INI field, and the condition is specified as its value.
Supported logical operators are <, <=, >, >=, ==, and !=.
For example, to keep only data points for which column foo is less or equal to 100, the following filter can be added:

filters = foo <= 100





To keep only data points for which the column foo does not equal bar, the following filter can be added:

filters = foo != bar





Filters can be conjunctively combined:

filters = foo > 5; foo <= 100





Count-based filters are also supported, using the designated nunique suffix.
For example, if the column subject is being used to define a random effects level and we want to exclude all subjects with fewer than 100 data points, this can be accomplished using the following filter:

filters = subjectsnunique > 100





More complex filtration conditions are not supported automatically in CDR but can be applied to the data by the user as a preprocess.

Several CDR utilities (e.g. for prediction and evaluation) are designed to handle train, dev, and test partitions of the input data, but these partitions must be constructed in advance.
This package also provides a partition utility that can be used to partition input data by applying modular arithmetic to some subset of the variables in the data.
For usage details run:

python -m cdr.bin.partition -h

IMPORTANT NOTES


	The files indicated in X_* must contain the following columns:


	time: Timestamp associated with each observation


	A column for each variable in series_ids


	A column for each predictor variable indicated in the model formula






	The file in y_* must contain the following columns:


	time: Timestamp associated with each observation


	A column for the response variable in the model formula


	A column for each variable in series_ids


	A column for each random grouping factor in the in the model formula


	A column for each variable used for data filtration (see below)






	Data in y_* may be filtered/partitioned, but data in X_* must be uncensored unless independent reason exists to assume that certain observations never have an impact on the response.






Section: [global_settings]

The [global_settings] section supports the following fields:


	outdir: str; Path to output directory where checkpoints, plots, and Tensorboard logs should be saved (default: ./cdr_model/).
If it does not exist, this directory will be created.
At runtime, the train utility will copy the config file to this directory as config.ini, serving as a record of the settings used to generate the analysis.


	use_gpu_if_available: bool; If available, run on GPU. If False, always runs on CPU even when system has compatible GPU.






Section: [cdr_settings]

The [cdr_settings] section supports the following fields:


All Models


	outdir: str; Path to output directory, where logs and model parameters are saved. Default: ./cdr_model/


	use_distributional_regression: bool; Whether to model all parameters of the response distribution as dependent on IRFs of the impulses (distributional regression). If False, only the mean depends on the predictors (other parameters of the response distribution are treated as constant). Default (CDR): False; Default (CDRNN): True


	response_distribution_map: str or None; Definition of response distribution. Can be a single distribution name (shared across all response variables), a space-delimited list of distribution names (one per response variable), a space-delimited list of ‘;’-delimited tuples matching response variables to distribution names (e.g. response;Bernoulli), or None, in which case the response distribution will be inferred as JohnsonSU for continuous variables and Categorical for categorical variables. Default: None


	center_inputs: bool; DISCOURAGED UNLESS YOU HAVE A GOOD REASON, since this can distort rate estimates. Center inputs by subtracting training set means. Can improve convergence speed and reduce vulnerability to local optima. Only affects fitting – prediction, likelihood computation, and plotting are reported on the source values. Default: False


	rescale_inputs: bool; Rescale input features by dividing by training set standard deviation. Can improve convergence speed and reduce vulnerability to local optima. Only affects fitting – prediction, likelihood computation, and plotting are reported on the source values. Default: True


	history_length: int; Length of the history (backward) window (in timesteps). Default: 128


	future_length: int; Length of the future (forward) window (in timesteps). Note that causal IRF kernels cannot be used if future_length > 0. Default: 0


	t_delta_cutoff: float or None; Maximum distance in time to consider (can help improve training stability on data with large gaps in time). If 0 or None, no cutoff. Default: None


	constraint: str; Constraint function to use for bounded variables. One of ['abs', 'square', 'softplus']. Default: softplus


	random_variables: str; Space-delimited list of model components to instantiate as (variationally optimized) random variables, rather than point estimates. Can be any combination of: [‘intercept’, ‘coefficient’, ‘interaction’, ‘irf_param’, ‘nn’]. Can also be ‘all’, ‘none’, or ‘default’, which defaults to all components except ‘nn’. Default: default


	scale_loss_with_data: bool; Whether to multiply the scale of the LL loss by N, where N is num batches. This turns the loss into an expectation over training set likelihood. Default: True


	scale_regularizer_with_data: bool; Whether to multiply the scale of all weight regularization by B * N, where B is batch size and N is num batches. If scale_loss_with_data is true, this approach ensures a stable regularization strength (relative to the loss) across datasets and batch sizes. Default: False


	n_iter: int; Number of training iterations. If using variational inference, this becomes the expected number of training iterations and is used only for Tensorboard logging, with no impact on training behavior. Default: 100000


	minibatch_size: int or None; Size of minibatches to use for fitting (full-batch if None). Default: 1024


	eval_minibatch_size: int; Size of minibatches to use for prediction/evaluation. Default: 1024


	n_samples_eval: int; Number of posterior predictive samples to draw for prediction/evaluation. Ignored for evaluating CDR MLE models. Default: 1000


	optim_name: str or None; Name of the optimizer to use. Must be one of:



	'SGD'


	'Momentum'


	'AdaGrad'


	'AdaDelta'


	'Adam'


	'FTRL'


	'RMSProp'


	'Nadam' Default: Adam









	max_gradient: float or None; Maximum allowable value for the gradient, which will be clipped as needed. If None, no max gradient. Default: None


	max_global_gradient_norm: float or None; Maximum allowable value for the global norm of the gradient, which will be clipped as needed. If None, no max global norm for the gradient. Default: 1.0


	use_safe_optimizer: bool; Stabilize training by preventing the optimizer from applying updates involving NaN gradients (affected weights will remain unchanged after the update). Incurs slight additional computational overhead and can lead to bias in the training process. Default: False


	epsilon: float; Epsilon parameter to use for numerical stability in bounded parameter estimation (imposes a positive lower bound on the parameter). Default: 1e-05


	response_dist_epsilon: float; Epsilon parameter to use for numerical stability in bounded parameters of the response distribution (imposes a positive lower bound on the parameter). Default: 1e-05


	optim_epsilon: float; Epsilon parameter to use if optim_name in ['Adam', 'Nadam'], ignored otherwise. Default: 1e-08


	learning_rate: float; Initial value for the learning rate. Default (CDR): 0.001; Default (CDRNN): 0.01


	learning_rate_min: float; Minimum value for the learning rate. Default: 0.0


	lr_decay_family: str or None; Functional family for the learning rate decay schedule (no decay if None). Default: None


	lr_decay_rate: float; coefficient by which to decay the learning rate every lr_decay_steps (ignored if lr_decay_family==None). Default: 1.0


	lr_decay_steps: int; Span of iterations over which to decay the learning rate by lr_decay_rate (ignored if lr_decay_family==None). Default: 100


	lr_decay_iteration_power: float; Power to which the iteration number t should be raised when computing the learning rate decay. Default: 0.5


	lr_decay_staircase: bool; Keep learning rate flat between lr_decay_steps (ignored if lr_decay_family==None). Default: False


	filter_outlier_losses: float, bool or None; Whether outlier large losses are filtered out while training continues. If False, outlier losses trigger a restart from the most recent save point. Ignored unless loss_cutoff_n_sds is specified. Using this option avoids restarts, but can lead to bias if training instances are systematically dropped. If None, False, or 0, no loss filtering. Default: False


	loss_cutoff_n_sds: float or None; How many moving standard deviations above the moving mean of the loss to use as a cut-off for stability (if outlier large losses are detected, training restarts from the preceding checkpoint). If None, or 0, no loss cut-off. Default: 1000


	ema_decay: float; Decay factor to use for exponential moving average for parameters (used in prediction). Default: 0.999


	convergence_n_iterates: int or None; Number of timesteps over which to average parameter movements for convergence diagnostics. If None or 0, convergence will not be programmatically checked (reduces memory overhead, but convergence must then be visually diagnosed). Default (CDR): 500; Default (CDRNN): 100


	convergence_stride: int; Stride (in iterations) over which to compute convergence. If larger than 1, iterations within a stride are averaged with the most recently saved value. Larger values increase the receptive field of the slope estimates, making convergence diagnosis less vulnerable to local perturbations but also increasing the number of post-convergence iterations necessary in order to identify convergence. If early_stopping is True, convergence_stride will implicitly be multiplied by eval_freq. Default: 1


	convergence_alpha: float or None; Significance threshold above which to fail to reject the null of no correlation between convergence basis and training time. Larger values are more stringent. Default: 0.5


	early_stopping: bool; Whether to diagnose convergence based on dev set performance (True) or training set performance (False). Default: True


	regularizer_name: str or None; Name of global regularizer; can be overridden by more regularizers for more specific parameters (e.g. l1_regularizer, l2_regularizer). If None, no regularization. Default: None


	regularizer_scale: str or float; Scale of global regularizer; can be overridden by more regularizers for more specific parameters (ignored if regularizer_name==None). Default: 0.0


	intercept_regularizer_name: str, "inherit" or None; Name of intercept regularizer (e.g. l1_regularizer, l2_regularizer); overrides regularizer_name. If 'inherit', inherits regularizer_name. If None, no regularization. Default: inherit


	intercept_regularizer_scale: str, float or "inherit"; Scale of intercept regularizer (ignored if regularizer_name==None). If 'inherit', inherits regularizer_scale. Default: inherit


	coefficient_regularizer_name: str, "inherit" or None; Name of coefficient regularizer (e.g. l1_regularizer, l2_regularizer); overrides regularizer_name. If 'inherit', inherits regularizer_name. If None, no regularization. Default: inherit


	coefficient_regularizer_scale: str, float or "inherit"; Scale of coefficient regularizer (ignored if regularizer_name==None). If 'inherit', inherits regularizer_scale. Default: inherit


	irf_regularizer_name: str, "inherit" or None; Name of IRF parameter regularizer (e.g. l1_regularizer, l2_regularizer); overrides regularizer_name. If 'inherit', inherits regularizer_name. If None, no regularization. Default: inherit


	irf_regularizer_scale: str, float or "inherit"; Scale of IRF parameter regularizer (ignored if regularizer_name==None). If 'inherit', inherits regularizer_scale. Default: inherit


	ranef_regularizer_name: str, "inherit" or None; Name of random effects regularizer (e.g. l1_regularizer, l2_regularizer); overrides regularizer_name. If 'inherit', inherits regularizer_name. If None, no regularization. Regularization only applies to random effects without variational priors. Default (CDR): inherit; Default (CDRNN): l2_regularizer


	ranef_regularizer_scale: str, float or "inherit"; Scale of random effects regularizer (ignored if regularizer_name==None). If 'inherit', inherits regularizer_scale. Regularization only applies to random effects without variational priors. Default (CDR): inherit; Default (CDRNN): 100.0


	regularize_mean: bool; Mean-aggregate regularized variables. If False, use sum aggregation. Default: False


	save_freq: int; Frequency (in iterations) with which to save model checkpoints. Default: 1


	plot_freq: int; Frequency (in iterations) with which to plot model estimates (or 0 to turn off incremental plotting). Default: 10


	eval_freq: int; Frequency (in iterations) with which to evaluate on dev data (or 0 to turn off incremental evaluation). Default: 10


	log_freq: int; Frequency (in iterations) with which to log model params to Tensorboard. Default: 1


	log_fixed: bool; Log random fixed to Tensorboard. Can slow training of models with many fixed effects. Default: True


	log_random: bool; Log random effects to Tensorboard. Can slow training of models with many random effects. Default: True


	log_graph: bool; Log the network graph to Tensorboard Default: False


	indicator_names: str; Space-delimited list of predictors that are indicators (0 or 1). Used for plotting and effect estimation (value 0 is always used as reference, rather than mean). Default:


	default_reference_type: "mean" or 0.0; Reference stimulus to use by default for plotting and effect estimation. If 0, zero vector. If mean, training set mean by predictor. Default (CDR): 0.0; Default (CDRNN): mean


	reference_values: str; Predictor values to use as a reference in plotting and effect estimation. Structured as space-delimited pairs NAME=FLOAT. Any predictor without a specified reference value will use either 0 or the training set mean, depending on plot_mean_as_reference. Default:


	plot_step: str; Size of step by predictor to take above reference in univariate IRF plots. Structured as space-delimited pairs NAME=FLOAT. Any predictor without a specified step size will inherit from plot_step_default. Default:


	plot_step_default: str or float; Default size of step to take above reference in univariate IRF plots, if not specified in plot_step. Either a float or the string 'sd', which indicates training sample standard deviation. Default: sd


	reference_time: float; Timepoint at which to plot interactions. Default: 0.0


	plot_n_time_units: float; Number of time units to use for plotting. Default: 1


	plot_n_time_points: int; Resolution of plot axis (for 3D plots, uses sqrt of this number for each axis). Default: 1024


	plot_dirac: bool; Whether to include any Dirac delta IRF’s (stick functions at t=0) in plot. Default: False


	plot_x_inches: float; Width of plot in inches. Default: 6.0


	plot_y_inches: float; Height of plot in inches. Default: 4.0


	plot_legend: bool; Whether to include a legend in plots with multiple components. Default: True


	generate_univariate_irf_plots: bool; Whether to plot univariate IRFs over time. Default: True


	generate_univariate_irf_heatmaps: bool; Whether to plot univariate IRF heatmaps over time. Default: False


	generate_curvature_plots: bool; Whether to plot IRF curvature at time reference_time. Default: True


	generate_irf_surface_plots: bool; Whether to plot IRF surfaces. Default: False


	generate_interaction_surface_plots: bool; Whether to plot IRF interaction surfaces at time reference_time. Default: False


	generate_err_dist_plots: bool; Whether to plot the average error distribution for real-valued responses. Default: True


	generate_nonstationarity_surface_plots: bool; Whether to plot IRF surfaces showing non-stationarity in the response. Default: False


	cmap: str; Name of MatPlotLib cmap specification to use for plotting (determines the color of lines in the plot). Default: gist_rainbow


	dpi: int; Dots per inch of saved plot image file. Default: 300


	keep_plot_history: bool; Keep IRF plots from each checkpoint of a run, which can help visualize learning trajectories but can also consume a lot of disk space. If False, only the most recent plot of each type is kept. Default: False


	declare_priors_fixef: bool; Specify Gaussian priors for all fixed model parameters (if False, use implicit improper uniform priors). Default: True


	declare_priors_ranef: bool; Specify Gaussian priors for all random model parameters (if False, use implicit improper uniform priors). Default: True


	intercept_prior_sd: str, float or None; Standard deviation of prior on fixed intercept. Can be a space-delimited list of ;-delimited floats (one per distributional parameter per response variable), a float (applied to all responses), or None, in which case the prior is inferred from prior_sd_scaling_coefficient and the empirical variance of the response on the training set. Default: None


	coef_prior_sd: str, float or None; Standard deviation of prior on fixed coefficients. Can be a space-delimited list of ;-delimited floats (one per distributional parameter per response variable), a float (applied to all responses), or None, in which case the prior is inferred from prior_sd_scaling_coefficient and the empirical variance of the response on the training set. Default: None


	irf_param_prior_sd: str or float; Standard deviation of prior on convolutional IRF parameters. Can be either a space-delimited list of ;-delimited floats (one per distributional parameter per response variable) or a float (applied to all responses) Default: 1.0


	y_sd_prior_sd: float or None; Standard deviation of prior on standard deviation of output model. If None, inferred as y_sd_prior_sd_scaling_coefficient times the empirical variance of the response on the training set. Default: None


	prior_sd_scaling_coefficient: float; Factor by which to multiply priors on intercepts and coefficients if inferred from the empirical variance of the data (i.e. if intercept_prior_sd or coef_prior_sd is None). Ignored for any prior widths that are explicitly specified. Default: 1


	y_sd_prior_sd_scaling_coefficient: float; Factor by which to multiply prior on output model variance if inferred from the empirical variance of the data (i.e. if y_sd_prior_sd is None). Ignored if prior width is explicitly specified. Default: 1


	ranef_to_fixef_prior_sd_ratio: float; Ratio of widths of random to fixed effects priors. I.e. if less than 1, random effects have tighter priors. Default: 0.1


	posterior_to_prior_sd_ratio: float; Ratio of posterior initialization SD to prior SD. Low values are often beneficial to stability, convergence speed, and quality of final fit by avoiding erratic sampling and divergent behavior early in training. Default: 0.01


	center_X_time: bool; Whether to center time values as inputs under the hood. Times are automatically shifted back to the source location for plotting and model criticism. Default: False


	center_t_delta: bool; Whether to center time offset values under the hood. Offsets are automatically shifted back to the source location for plotting and model criticism. Default: False


	rescale_X_time: bool; Whether to rescale time values as inputs by their training SD under the hood. Times are automatically reconverted back to the source scale for plotting and model criticism. Default: True


	rescale_t_delta: bool; Whether to rescale time offset values by their training SD under the hood. Offsets are automatically reconverted back to the source scale for plotting and model criticism. Default: False


	nn_use_input_scaler: bool; Whether to apply a Hadamard scaling layer to the inputs to any NN components. Default: False


	log_transform_t_delta: bool; Whether to log-modulus transform time offset values for stability under the hood (log-modulus is used to handle negative values in non-causal models). Offsets are automatically reconverted back to the source scale for plotting and model criticism. Default: False


	nonstationary: bool; Whether to model non-stationarity in NN components by feeding impulse timestamps as input. Default: True


	n_layers_ff: int or None; Number of hidden layers in feedforward encoder. If None, inferred from length of n_units_ff. Default: 2


	n_units_ff: int, str or None; Number of units per feedforward encoder hidden layer. Can be an int, which will be used for all layers, or a str with n_layers_rnn space-delimited integers, one for each layer in order from bottom to top. If 0 or None, no feedforward encoder. Default: 128


	n_layers_rnn: int or None; Number of RNN layers. If None, inferred from length of n_units_rnn. Default: None


	n_units_rnn: int, str or None; Number of units per RNN layer. Can be an int, which will be used for all layers, or a str with n_layers_rnn space-delimited integers, one for each layer in order from bottom to top. Can also be 'infer', which infers the size from the number of predictors, or 'inherit', which uses size n_units_hidden_state. If 0 or None, no RNN encoding (i.e. use a context-independent convolution kernel). Default: None


	n_layers_rnn_projection: int or None; Number of hidden layers in projection of RNN state (or of timestamp + predictors if no RNN). If None, inferred automatically. Default: None


	n_units_rnn_projection: int, str or None; Number of units per hidden layer in projection of RNN state. Can be an int, which will be used for all layers, or a str with n_units_rnn_projection space-delimited integers, one for each layer in order from bottom to top. If 0 or None, no hidden layers in RNN projection. Default: None


	n_layers_irf: int or None; Number of IRF hidden layers. If None, inferred from length of n_units_irf. Default: 2


	n_units_irf: int, str or None; Number of units per hidden layer in IRF. Can be an int, which will be used for all layers, or a str with n_units_irf space-delimited integers, one for each layer in order from bottom to top. If 0 or None, no hidden layers. Default: 128


	input_dependent_irf: bool; Whether or not NN IRFs are input-dependent (can modify their shape at different values of the predictors). Default: True


	ranef_l1_only: bool; Whether to include random effects only on first layer of feedforward transforms (True) or on all neural components. Default: False


	ranef_bias_only: bool; Whether to include random effects only on bias terms of neural components (True) or also on weight matrices. Default: True


	normalizer_use_ranef: bool; Whether to include random effects in normalizer layers (True) or not. Default: False


	ff_inner_activation: str or None; Name of activation function to use for hidden layers in feedforward encoder. Default: gelu


	ff_activation: str or None; Name of activation function to use for output of feedforward encoder. Default: None


	rnn_activation: str or None; Name of activation to use in RNN layers. Default: tanh


	recurrent_activation: str or None; Name of recurrent activation to use in RNN layers. Default: sigmoid


	rnn_projection_inner_activation: str or None; Name of activation function to use for hidden layers in projection of RNN state. Default: gelu


	rnn_projection_activation: str or None; Name of activation function to use for final layer in projection of RNN state. Default: None


	irf_inner_activation: str or None; Name of activation function to use for hidden layers in IRF. Default: gelu


	irf_activation: str or None; Name of activation function to use for final layer in IRF. Default: None


	kernel_initializer: str or None; Name of initializer to use in encoder kernels. Default: glorot_uniform_initializer


	recurrent_initializer: str or None; Name of initializer to use in encoder recurrent kernels. Default: orthogonal_initializer


	weight_sd_init: str, float or None; Standard deviation of kernel initialization distribution (Normal, mean=0). Can also be 'glorot', which uses the SD of the Glorot normal initializer. If None, inferred from other hyperparams. Default: glorot


	batch_normalization_decay: bool, float or None; Decay rate to use for batch normalization in internal layers. If True, uses decay 0.999. If False or None, no batch normalization. Default: None


	layer_normalization_type: bool, str or None; Type of layer normalization, one of ['z', 'length', None]. If 'z', classical z-transform-based normalization. If 'length', normalize by the norm of the activation vector. If True, uses 'z'. If False or None, no layer normalization. Default: z


	normalize_ff: bool; Whether to apply normalization (if applicable) to hidden layers of feedforward encoders. Default: True


	normalize_irf: bool; Whether to apply normalization (if applicable) to non-initial internal IRF layers. Default: True


	normalize_after_activation: bool; Whether to apply normalization (if applicable) after the non-linearity (otherwise, applied before). Default: False


	shift_normalized_activations: bool; Whether to use trainable shift in batch/layer normalization layers. Default: True


	rescale_normalized_activations: bool; Whether to use trainable scale in batch/layer normalization layers. Default: True


	normalize_inputs: bool; Whether to apply normalization (if applicable) to the inputs. Default: False


	normalize_final_layer: bool; Whether to apply normalization (if applicable) to the final layer. Default: False


	nn_regularizer_name: str, "inherit" or None; Name of weight regularizer (e.g. l1_regularizer, l2_regularizer); overrides regularizer_name. If 'inherit', inherits regularizer_name. If None, no regularization. Default: None


	nn_regularizer_scale: str, float or "inherit"; Scale of weight regularizer (ignored if regularizer_name==None). If 'inherit', inherits regularizer_scale. Default: 1.0


	activity_regularizer_name: str, "inherit" or None; Name of activity regularizer (e.g. l1_regularizer, l2_regularizer); overrides regularizer_name. If 'inherit', inherits regularizer_name. If None, no activity regularization. Default: None


	activity_regularizer_scale: str, float or "inherit"; Scale of activity regularizer (ignored if regularizer_name==None). If 'inherit', inherits regularizer_scale. Default: 5.0


	ff_regularizer_name: str or None; Name of weight regularizer (e.g. l1_regularizer, l2_regularizer) on output layer of feedforward encoders; overrides regularizer_name. If None, inherits from nn_regularizer_name. Default: None


	ff_regularizer_scale: str or float; Scale of weight regularizer (ignored if regularizer_name==None) on output layer of feedforward encoders. If None, inherits from nn_regularizer_scale. Default: 5.0


	regularize_initial_layer: bool; Whether to regulare the first layer of NN components. Default: True


	regularize_final_layer: bool; Whether to regulare the last layer of NN components. Default: False


	rnn_projection_regularizer_name: str or None; Name of weight regularizer (e.g. l1_regularizer, l2_regularizer) on output layer of RNN projection; overrides regularizer_name. If None, inherits from nn_regularizer_name. Default: None


	rnn_projection_regularizer_scale: str or float; Scale of weight regularizer (ignored if regularizer_name==None) on output layer of RNN projection. If None, inherits from nn_regularizer_scale. Default: 5.0


	context_regularizer_name: str, "inherit" or None; Name of regularizer on contribution of context (RNN) to hidden state (e.g. l1_regularizer, l2_regularizer); overrides regularizer_name. If 'inherit', inherits regularizer_name. If None, no regularization. Default: l1_l2_regularizer


	context_regularizer_scale: float or "inherit"; Scale of weight regularizer (ignored if context_regularizer_name==None). If 'inherit', inherits regularizer_scale. Default: 10.0


	maxnorm: float or None; Bound on norm of dense kernel dimensions for max-norm regularization. If None, no max-norm regularization. Default: None


	input_dropout_rate: float or None; Rate at which to drop input_features. Default: None


	ff_dropout_rate: float or None; Rate at which to drop neurons of FF projection. Default: 0.5


	rnn_h_dropout_rate: float or None; Rate at which to drop neurons of RNN hidden state. Default: None


	rnn_c_dropout_rate: float or None; Rate at which to drop neurons of RNN cell state. Default: None


	h_rnn_dropout_rate: float or None; Rate at which to drop neurons of h_rnn. Default: 0.5


	rnn_dropout_rate: float or None; Rate at which to entirely drop the RNN. Default: 0.5


	irf_dropout_rate: float or None; Rate at which to drop neurons of IRF layers. Default: 0.5


	ranef_dropout_rate: float or None; Rate at which to drop random effects indicators. Default: None


	dropout_final_layer: bool; Whether to apply dropout to the last layer of NN components. Default: False


	fixed_dropout: bool; Whether to fix the dropout mask over the time dimension during training, ensuring that each training instance is processed by the same resampled model. Default: True


	declare_priors_weights: bool; Specify Gaussian priors for all fixed model parameters (if False, use implicit improper uniform priors). Default: True


	declare_priors_biases: bool; Specify Gaussian priors for model biases (if False, use implicit improper uniform priors). Default: True


	declare_priors_gamma: bool; Specify Gaussian priors for gamma parameters of any batch normalization layers (if False, use implicit improper uniform priors). Default: True


	weight_prior_sd: str or float; Standard deviation of prior on CDRNN hidden weights. A float, 'glorot', or 'he'. Default: glorot


	bias_prior_sd: str or float; Standard deviation of prior on CDRNN hidden biases. A float, 'glorot', or 'he'. Default: 1.0


	gamma_prior_sd: str or float; Standard deviation of prior on batch norm gammas. A float, 'glorot', or 'he'. Ignored unless batch normalization is used Default: 1


	bias_sd_init: str, float or None; Initial standard deviation of variational posterior over biases. If None, inferred from other hyperparams. Default: None


	gamma_sd_init: str, float or None; Initial standard deviation of variational posterior over batch norm gammas. If None, inferred from other hyperparams. Ignored unless batch normalization is used. Default: None






Variational Bayes


	declare_priors_fixef: bool; Specify Gaussian priors for all fixed model parameters (if False, use implicit improper uniform priors). Default: True


	declare_priors_ranef: bool; Specify Gaussian priors for all random model parameters (if False, use implicit improper uniform priors). Default: True


	intercept_prior_sd: str, float or None; Standard deviation of prior on fixed intercept. Can be a space-delimited list of ;-delimited floats (one per distributional parameter per response variable), a float (applied to all responses), or None, in which case the prior is inferred from prior_sd_scaling_coefficient and the empirical variance of the response on the training set. Default: None


	coef_prior_sd: str, float or None; Standard deviation of prior on fixed coefficients. Can be a space-delimited list of ;-delimited floats (one per distributional parameter per response variable), a float (applied to all responses), or None, in which case the prior is inferred from prior_sd_scaling_coefficient and the empirical variance of the response on the training set. Default: None


	irf_param_prior_sd: str or float; Standard deviation of prior on convolutional IRF parameters. Can be either a space-delimited list of ;-delimited floats (one per distributional parameter per response variable) or a float (applied to all responses) Default: 1.0


	y_sd_prior_sd: float or None; Standard deviation of prior on standard deviation of output model. If None, inferred as y_sd_prior_sd_scaling_coefficient times the empirical variance of the response on the training set. Default: None


	prior_sd_scaling_coefficient: float; Factor by which to multiply priors on intercepts and coefficients if inferred from the empirical variance of the data (i.e. if intercept_prior_sd or coef_prior_sd is None). Ignored for any prior widths that are explicitly specified. Default: 1


	y_sd_prior_sd_scaling_coefficient: float; Factor by which to multiply prior on output model variance if inferred from the empirical variance of the data (i.e. if y_sd_prior_sd is None). Ignored if prior width is explicitly specified. Default: 1


	ranef_to_fixef_prior_sd_ratio: float; Ratio of widths of random to fixed effects priors. I.e. if less than 1, random effects have tighter priors. Default: 0.1


	posterior_to_prior_sd_ratio: float; Ratio of posterior initialization SD to prior SD. Low values are often beneficial to stability, convergence speed, and quality of final fit by avoiding erratic sampling and divergent behavior early in training. Default: 0.01






Neural Network Components


	center_X_time: bool; Whether to center time values as inputs under the hood. Times are automatically shifted back to the source location for plotting and model criticism. Default: False


	center_t_delta: bool; Whether to center time offset values under the hood. Offsets are automatically shifted back to the source location for plotting and model criticism. Default: False


	rescale_X_time: bool; Whether to rescale time values as inputs by their training SD under the hood. Times are automatically reconverted back to the source scale for plotting and model criticism. Default: True


	rescale_t_delta: bool; Whether to rescale time offset values by their training SD under the hood. Offsets are automatically reconverted back to the source scale for plotting and model criticism. Default: False


	nn_use_input_scaler: bool; Whether to apply a Hadamard scaling layer to the inputs to any NN components. Default: False


	log_transform_t_delta: bool; Whether to log-modulus transform time offset values for stability under the hood (log-modulus is used to handle negative values in non-causal models). Offsets are automatically reconverted back to the source scale for plotting and model criticism. Default: False


	nonstationary: bool; Whether to model non-stationarity in NN components by feeding impulse timestamps as input. Default: True


	n_layers_ff: int or None; Number of hidden layers in feedforward encoder. If None, inferred from length of n_units_ff. Default: 2


	n_units_ff: int, str or None; Number of units per feedforward encoder hidden layer. Can be an int, which will be used for all layers, or a str with n_layers_rnn space-delimited integers, one for each layer in order from bottom to top. If 0 or None, no feedforward encoder. Default: 128


	n_layers_rnn: int or None; Number of RNN layers. If None, inferred from length of n_units_rnn. Default: None


	n_units_rnn: int, str or None; Number of units per RNN layer. Can be an int, which will be used for all layers, or a str with n_layers_rnn space-delimited integers, one for each layer in order from bottom to top. Can also be 'infer', which infers the size from the number of predictors, or 'inherit', which uses size n_units_hidden_state. If 0 or None, no RNN encoding (i.e. use a context-independent convolution kernel). Default: None


	n_layers_rnn_projection: int or None; Number of hidden layers in projection of RNN state (or of timestamp + predictors if no RNN). If None, inferred automatically. Default: None


	n_units_rnn_projection: int, str or None; Number of units per hidden layer in projection of RNN state. Can be an int, which will be used for all layers, or a str with n_units_rnn_projection space-delimited integers, one for each layer in order from bottom to top. If 0 or None, no hidden layers in RNN projection. Default: None


	n_layers_irf: int or None; Number of IRF hidden layers. If None, inferred from length of n_units_irf. Default: 2


	n_units_irf: int, str or None; Number of units per hidden layer in IRF. Can be an int, which will be used for all layers, or a str with n_units_irf space-delimited integers, one for each layer in order from bottom to top. If 0 or None, no hidden layers. Default: 128


	input_dependent_irf: bool; Whether or not NN IRFs are input-dependent (can modify their shape at different values of the predictors). Default: True


	ranef_l1_only: bool; Whether to include random effects only on first layer of feedforward transforms (True) or on all neural components. Default: False


	ranef_bias_only: bool; Whether to include random effects only on bias terms of neural components (True) or also on weight matrices. Default: True


	normalizer_use_ranef: bool; Whether to include random effects in normalizer layers (True) or not. Default: False


	ff_inner_activation: str or None; Name of activation function to use for hidden layers in feedforward encoder. Default: gelu


	ff_activation: str or None; Name of activation function to use for output of feedforward encoder. Default: None


	rnn_activation: str or None; Name of activation to use in RNN layers. Default: tanh


	recurrent_activation: str or None; Name of recurrent activation to use in RNN layers. Default: sigmoid


	rnn_projection_inner_activation: str or None; Name of activation function to use for hidden layers in projection of RNN state. Default: gelu


	rnn_projection_activation: str or None; Name of activation function to use for final layer in projection of RNN state. Default: None


	irf_inner_activation: str or None; Name of activation function to use for hidden layers in IRF. Default: gelu


	irf_activation: str or None; Name of activation function to use for final layer in IRF. Default: None


	kernel_initializer: str or None; Name of initializer to use in encoder kernels. Default: glorot_uniform_initializer


	recurrent_initializer: str or None; Name of initializer to use in encoder recurrent kernels. Default: orthogonal_initializer


	weight_sd_init: str, float or None; Standard deviation of kernel initialization distribution (Normal, mean=0). Can also be 'glorot', which uses the SD of the Glorot normal initializer. If None, inferred from other hyperparams. Default: glorot


	batch_normalization_decay: bool, float or None; Decay rate to use for batch normalization in internal layers. If True, uses decay 0.999. If False or None, no batch normalization. Default: None


	layer_normalization_type: bool, str or None; Type of layer normalization, one of ['z', 'length', None]. If 'z', classical z-transform-based normalization. If 'length', normalize by the norm of the activation vector. If True, uses 'z'. If False or None, no layer normalization. Default: z


	normalize_ff: bool; Whether to apply normalization (if applicable) to hidden layers of feedforward encoders. Default: True


	normalize_irf: bool; Whether to apply normalization (if applicable) to non-initial internal IRF layers. Default: True


	normalize_after_activation: bool; Whether to apply normalization (if applicable) after the non-linearity (otherwise, applied before). Default: False


	shift_normalized_activations: bool; Whether to use trainable shift in batch/layer normalization layers. Default: True


	rescale_normalized_activations: bool; Whether to use trainable scale in batch/layer normalization layers. Default: True


	normalize_inputs: bool; Whether to apply normalization (if applicable) to the inputs. Default: False


	normalize_final_layer: bool; Whether to apply normalization (if applicable) to the final layer. Default: False


	nn_regularizer_name: str, "inherit" or None; Name of weight regularizer (e.g. l1_regularizer, l2_regularizer); overrides regularizer_name. If 'inherit', inherits regularizer_name. If None, no regularization. Default: None


	nn_regularizer_scale: str, float or "inherit"; Scale of weight regularizer (ignored if regularizer_name==None). If 'inherit', inherits regularizer_scale. Default: 1.0


	activity_regularizer_name: str, "inherit" or None; Name of activity regularizer (e.g. l1_regularizer, l2_regularizer); overrides regularizer_name. If 'inherit', inherits regularizer_name. If None, no activity regularization. Default: None


	activity_regularizer_scale: str, float or "inherit"; Scale of activity regularizer (ignored if regularizer_name==None). If 'inherit', inherits regularizer_scale. Default: 5.0


	ff_regularizer_name: str or None; Name of weight regularizer (e.g. l1_regularizer, l2_regularizer) on output layer of feedforward encoders; overrides regularizer_name. If None, inherits from nn_regularizer_name. Default: None


	ff_regularizer_scale: str or float; Scale of weight regularizer (ignored if regularizer_name==None) on output layer of feedforward encoders. If None, inherits from nn_regularizer_scale. Default: 5.0


	regularize_initial_layer: bool; Whether to regulare the first layer of NN components. Default: True


	regularize_final_layer: bool; Whether to regulare the last layer of NN components. Default: False


	rnn_projection_regularizer_name: str or None; Name of weight regularizer (e.g. l1_regularizer, l2_regularizer) on output layer of RNN projection; overrides regularizer_name. If None, inherits from nn_regularizer_name. Default: None


	rnn_projection_regularizer_scale: str or float; Scale of weight regularizer (ignored if regularizer_name==None) on output layer of RNN projection. If None, inherits from nn_regularizer_scale. Default: 5.0


	context_regularizer_name: str, "inherit" or None; Name of regularizer on contribution of context (RNN) to hidden state (e.g. l1_regularizer, l2_regularizer); overrides regularizer_name. If 'inherit', inherits regularizer_name. If None, no regularization. Default: l1_l2_regularizer


	context_regularizer_scale: float or "inherit"; Scale of weight regularizer (ignored if context_regularizer_name==None). If 'inherit', inherits regularizer_scale. Default: 10.0


	maxnorm: float or None; Bound on norm of dense kernel dimensions for max-norm regularization. If None, no max-norm regularization. Default: None


	input_dropout_rate: float or None; Rate at which to drop input_features. Default: None


	ff_dropout_rate: float or None; Rate at which to drop neurons of FF projection. Default: 0.5


	rnn_h_dropout_rate: float or None; Rate at which to drop neurons of RNN hidden state. Default: None


	rnn_c_dropout_rate: float or None; Rate at which to drop neurons of RNN cell state. Default: None


	h_rnn_dropout_rate: float or None; Rate at which to drop neurons of h_rnn. Default: 0.5


	rnn_dropout_rate: float or None; Rate at which to entirely drop the RNN. Default: 0.5


	irf_dropout_rate: float or None; Rate at which to drop neurons of IRF layers. Default: 0.5


	ranef_dropout_rate: float or None; Rate at which to drop random effects indicators. Default: None


	dropout_final_layer: bool; Whether to apply dropout to the last layer of NN components. Default: False


	fixed_dropout: bool; Whether to fix the dropout mask over the time dimension during training, ensuring that each training instance is processed by the same resampled model. Default: True






Variational Bayesian Neural Network Components


	declare_priors_weights: bool; Specify Gaussian priors for all fixed model parameters (if False, use implicit improper uniform priors). Default: True


	declare_priors_biases: bool; Specify Gaussian priors for model biases (if False, use implicit improper uniform priors). Default: True


	declare_priors_gamma: bool; Specify Gaussian priors for gamma parameters of any batch normalization layers (if False, use implicit improper uniform priors). Default: True


	weight_prior_sd: str or float; Standard deviation of prior on CDRNN hidden weights. A float, 'glorot', or 'he'. Default: glorot


	bias_prior_sd: str or float; Standard deviation of prior on CDRNN hidden biases. A float, 'glorot', or 'he'. Default: 1.0


	gamma_prior_sd: str or float; Standard deviation of prior on batch norm gammas. A float, 'glorot', or 'he'. Ignored unless batch normalization is used Default: 1


	bias_sd_init: str, float or None; Initial standard deviation of variational posterior over biases. If None, inferred from other hyperparams. Default: None


	gamma_sd_init: str, float or None; Initial standard deviation of variational posterior over batch norm gammas. If None, inferred from other hyperparams. Ignored unless batch normalization is used. Default: None







Section: [irf_name_map]

The optional [irf_name_map] section simply permits prettier variable naming in plots.
For example, the internal name for a convolution applied to predictor A may be ShiftedGammaKgt1.s(A)-Terminal.s(A), which is not very readable.
To address this, the string above can be mapped to a more readable name using an INI key-value pair, as shown:

ShiftedGammaKgt1.s(A)-Terminal.s(A) = A





The model will then print A in plots rather than ShiftedGammaKgt1.s(A)-Terminal.s(A).
Unused entries in the name map are ignored, and model variables that do not have an entry in the name map print with their default internal identifier.



Sections: [model_CDR_*]

Arbitrarily many sections named [model_CDR_*] can be provided in the config file, where * stands in for a unique identifier.
Each such section defines a different CDR model and must contain at least one field — formula — whose value is a CDR model formula (see CDR Model Formulas for more on CDR formula syntax)
The identifier CDR_* will be used by the CDR utilities to reference the fitted model and its output files.

For example, to define a CDR model called readingtimes, the section header [model_CDR_readingtimes] is included in the config file along with an appropriate formula specification.
To use this specific model once fitted, it can be referenced using the identifier CDR_readingtimes.
For example, the following call will extract predictions on dev data from a fitted CDR_readingtimes defined in config file config.ini:

python -m cdr.bin.predict config.ini -m CDR_readingtimes -p dev





Additional fields from [cdr_settings] may be specified for a given model, in which case the locally-specified setting (rather than the globally specified setting or the default value) will be used to train the model.
For example, imagine that [cdr_settings] contains the field n_iter = 1000.
All CDR models subsequently specified in the config file will train for 1000 iterations.
However, imagine that model [model_CDR_longertrain] should train for 5000 iterations instead.
This can be specified within the same config file as:

[model_CDR_longertrain]
n_iter = 5000
formula = ...





This setup allows a single config file to define a variety of CDR models, as long as they all share the same data.
Distinct datasets require distinct config files.

For hypothesis testing, fixed effect ablation can be conveniently automated using the ablate model field.
For example, the following specification implicitly defines 7 unique models, one for each of the |powerset(a, b, c)| - 1 = 7
non-null ablations of a, b, and c:

[model_CDR_example]
n_iter = 5000
ablate = a b c
formula = C(a + b + c, Normal()) + (C(a + b + c, Normal()) | subject)





The ablated models are named using '!' followed by the name for each ablated predictor.
Therefore, the above specification is equivalent to (and much easier to write than) the following:

[model_CDR_example]
n_iter = 5000
formula = C(a + b + c, Normal()) + (C(a + b + c, Normal()) | subject)

[model_CDR_example!a]
n_iter = 5000
formula = C(b + c, Normal()) + (C(a + b + c, Normal()) | subject)

[model_CDR_example!b]
n_iter = 5000
formula = C(a + c, Normal()) + (C(a + b + c, Normal()) | subject)

[model_CDR_example!c]
n_iter = 5000
formula = C(a + b, Normal()) + (C(a + b + c, Normal()) | subject)

[model_CDR_example!a!b]
n_iter = 5000
formula = C(c, Normal()) + (C(a + b + c, Normal()) | subject)

[model_CDR_example!a!c]
n_iter = 5000
formula = C(b, Normal()) + (C(a + b + c, Normal()) | subject)

[model_CDR_example!b!c]
n_iter = 5000
formula = C(a, Normal()) + (C(a + b + c, Normal()) | subject)









            

          

      

      

    

  

    
      
          
            
  
CDR Model Formulas


Basic Overview

This package constructs CDR models from R-style formula strings defining the model structure.
A CDR formula has the following template:

RESPONSE ~ FIXED_EFFECTS + RANDOM_EFFECTS





The left-hand side (LHS) of the formula contains the name a single (possibly transformed) variable from the input data table, and the right-hand side (RHS) contains fixed and random effects, each of which must consist exclusively of intercept terms and/or convolutional terms.
Intercept terms can be added by including 1 in the RHS and removed by including 0 in the RHS.
If neither of these appears in the RHS, an intercept is added by default.

WARNING: The compiler for CDR formulas is still in development and may fail to correctly process certain formula strings, especially ones that contain hierarchical term expansions, categorical variable expansions, and/or interactions.
Please double-check the correctness of the model formula reported at the start of training and report problems in the issue tracker on Github [https://github.com/coryshain/cdr].

WARNING: If you are using interaction terms, it is easy to accidentally mis-specify your formula because interactions are trickier in CDR than in linear models.
Make sure to read Interactions in CDR before fitting models with interactions.

WARNING: Column names in your data must be valid Python identifiers in order to be parsed correctly in model formulas.
Numeric names, names containing punctuation other than underscore, and other violations of Python’s variable naming rules can result in an incorrect formula parse, which will at best crash and at worse quietly build a different model than the one you wanted.



CDR Model Formulas


Linear (DiracDelta) Predictors

A trivial way of “deconvolving” a predictor A is to assume a Dirac delta response to A: \(A\) at \(t=0\), \(0\) otherwise.
DiracDelta IRF are thus equivalent to predictors in linear models; only the value of the predictor that coincides with the response measurement is used for prediction.
Linear (mixed) models of time series are therefore a special subtype of CDR, namely CDR models that exclusively use Dirac delta response kernels.
While you therefore can use this package to fit LME models, that doesn’t mean you should!
The stochastic optimization used here is likely much less efficient in this simple case than that of specialized LME regression tools.

However, the availability of Dirac delta responses in this package means that CDR can combine linear and convolved substructures into a single model, which is important for many use cases.
For example, imagine a bi-variate model with predictors stimulus and condition, where stimulus varies within each time series can might engender a temporally diffise response while condition is held fixed within each time series.
In this case, a convolution of condition would be meaningless (or at least perfectly confounded with rate, the deconvolutional intercept); instead, we’re interested in a linear effect of condition and a convolved effect of stimulus on the response.
Dirac delta responses can specified manually using the syntax described in the following sections.
However, for convenience, bare predictor names in model formulas (outside of convolution calls C()) are automatically interpreted as Dirac delta.
This allows you to retain stock formula syntax that might already be familiar from linear (mixed) models in R in order to define linear substructures of your CDR model.
For example, the following is interpreted as specifying linear effects for each of A, B, and the interaction A:B:

y ~ A + B + C:B





An important caveat in using Dirac delta responses is that the predictors they apply to should be response-aligned, that is, measured at the same moments in time that the responses themselves are.
If the stimuli and responses are measured at different points in time, you cannot fit a Dirac delta response to a stimulus-aligned variable unless that variable happens at least sometimes to accidentally be measured concurrently with the response.
CDR does not internally distinguish stimulus-aligned and response-aligned predictors, so it’s up to users to make sure that models are sensible in this regard.
However, the model does internally mask all elements in a Dirac delta predictor that are not simultaneous with the response.
Therefore, fitting a Dirac delta response to a stimulus-aligned predictor will not produce an erroneous model; in the worst case, the entire predictor will be masked and therefore ignored by the model.



Defining an Impulse Response Function (IRF)

A convolutional term is defined using the syntax C(..., IRF_FAMILY()), where ... is replaced by names of predictors contained in the input data.
For example, to define a Gamma convolution of predictor A, the expression C(A, Gamma()) is added to the RHS.
Separate terms are delimited by +.
For example, to add a Gaussian convolution of predictor B, the RHS above becomes C(A, Gamma()) + C(B, Normal()).



Supported Parametric IRFs

The currently supported parametric IRF families are the following.
All IRFs are normalized to integrate to 1 over the positive real line.
For simplicity, normalization constants are omitted from the equations below.
For details, see Shain & Schuler (2021).


	DiracDelta: Stick function (equivalent to a predictor in linear regression, see Linear (DiracDelta) Predictors)


	Parameters:


	None






	Definition: \(1\) at \(x=0\), \(0\) otherwise






	Exp: PDF of exponential distribution


	Parameters:


	\(\beta > 0\): beta (rate)






	Definition: \(\beta e^{-\beta x}\)


	Note: Dropping the normalization constant from the PDF helps deconfound IRF shape and magnitude. Normalization is unnecessary since this kernel defines an IRF, not a probability distribution.






	Gamma: PDF of gamma distribution


	Parameters:


	\(\alpha > 0\): alpha (shape)


	\(\beta > 0\): beta (rate)






	Definition: \(\frac{\beta^{\alpha}x^{\alpha-1}e^{-\frac{x}{\beta}}}{\Gamma(\alpha)}\)






	ShiftedGamma: PDF of gamma distribution with support starting at \(0 + \delta\)


	Parameters:


	\(\alpha > 0\): alpha (shape)


	\(\beta > 0\): beta (rate)


	\(\delta < 0\): delta (shift)






	Definition: \(\frac{\beta^{\alpha}(x - \delta)^{\alpha-1}e^{-\frac{x - \delta}{\beta}}}{\Gamma(\alpha)}\)






	GammaShapeGT1: PDF of gamma distribution, \(\alpha > 1\) (enforces rising-then-falling shape)


	Parameters:


	\(\alpha > 1\): alpha (shape)


	\(\beta > 1\): beta (rate)






	Definition: \(\frac{\beta^{\alpha}x^{\alpha-1}e^{-\frac{x}{\beta}}}{\Gamma(\alpha)}\)






	ShiftedGammaShapeGT1: PDF of gamma distribution with support starting at \(0 + \delta\), \(\alpha > 1\) (enforces rising-then-falling shape)


	Parameters:


	\(\alpha > 1\): alpha (shape)


	\(\beta > 0\): beta (rate)


	\(\delta < 0\): delta (shift)






	Definition: \(\frac{\beta^{\alpha}(x - \delta)^{\alpha-1}e^{-\frac{x - \delta}{\beta}}}{\Gamma(\alpha)}\)






	Normal: PDF of Gaussian (normal) distribution


	Parameters:


	\(\mu\): mu (mean)


	\(\sigma^2 > 0\): sigma2 (variance)






	Definition: \(\frac{1}{\sqrt{2\pi \sigma^2}}e^{-\frac{(x - \mu) ^ 2}{2 \sigma ^ 2}}\)


	Note: Dropping the normalization constant from the PDF helps deconfound IRF shape and magnitude. Normalization is unnecessary since this kernel defines an IRF, not a probability distribution.






	SkewNormal: PDF of SkewNormal distribution (normal distribution augmented with left/right skew parameter)


	Parameters:


	\(\mu\) (mean)


	\(\sigma > 0\) (standard deviation)


	\(\alpha\) (skew)






	Definition: Let \(\phi\) and \(\Phi\) denote the PDF and CDF (respectively) of the standard normal distribution.
Then the SkewNormal distribution is:
\(\frac{2}{\sigma} \phi\left(\frac{x-\mu}{\sigma}\right) \Phi(\alpha \frac{x-\mu}{\sigma})\)






	EMG: PDF of exponentially modified gaussian distribution (convolution of a normal with an exponential distribution, can be right-skewed)


	Parameters:


	\(\mu\): mu (mean)


	\(\sigma > 0\): sigma (standard deviation)


	\(\beta > 0\): beta (rate)






	Definition: \(\frac{\beta}{2}e^{\frac{\beta}{2}\left(2\mu + \beta \sigma^2 - 2x \right)} \mathrm{erfc} \left(\frac{m + \beta \sigma ^2 - x}{\sqrt{2}\sigma}\right)\), where \(\mathrm{erfc}(x) = \frac{2}{\sqrt{\pi}}\int_x^{\infty} e^{-t^2}dt\).






	BetaPrime: PDF of BetaPrime (inverted beta) distribution


	Parameters:


	\(\alpha > 0\): alpha (shape)


	\(\beta > 0\): beta (shape)






	Definition: \(\frac{x^{\alpha - 1}(1 + x)^{-\alpha - \beta}}{B(\alpha, \beta)}\)






	ShiftedBetaPrime: PDF of BetaPrime (inverted beta) distribution with support starting at \(0 + \delta\)


	Parameters:


	\(\alpha > 0\): alpha (shape)


	\(\beta > 0\): beta (shape)


	\(\delta < 0\): delta (shift)






	Definition: \(\frac{(x-\delta)^{\alpha - 1}(1 + (x - \delta))^{-\alpha - \beta}}{B(\alpha, \beta)}\)






	HRFSingleGamma: Single-gamma hemodynamic response function (fMRI). Identical to GammaShapeGT1 except in its initial parameter values, which are inherited from the peak response model of the canonical HRF in SPM (\(\alpha = 6\) and \(\beta = 1\))


	Parameters:


	\(\alpha > 0\): alpha (shape)


	\(\beta > 0\): beta (rate)






	Definition: \(\frac{\beta^{\alpha}x^{\alpha-1}e^{-\frac{x}{\beta}}}{\Gamma(\alpha)}\)






	HRFDoubleGamma1: 1-parameter double-gamma hemodynamic response function (fMRI). Shape parameters are fixed at SPM’s defaults for both the first and second gammas (6 and 16, respectively). Parameter \(\beta\) is tied between both gammas. The coefficient on the second gamma is fixed at SPM’s default (\(\frac{1}{6}\)). This is a “stretchable” canonical HRF.


	Parameters:


	\(\beta > 0\): beta (peak and undershoot rate)






	Definition: \(\frac{\beta^{6}x^{6-1}e^{-\frac{x}{\beta}}}{\Gamma(6)} - \frac{1}{6}\frac{\beta^{16}x^{15}e^{-\frac{x}{\beta}}}{\Gamma(16)}\)






	HRFDoubleGamma2: 2-parameter double-gamma hemodynamic response function (fMRI). Parameter \(\alpha\) of the second gamma is fixed to the \(alpha\) of the first gamma using SPM




s default offset (10). Parameter \(\beta\) is tied between both gammas. The coefficient on the second gamma is fixed at SPM’s default (\(\frac{1}{6}\)).



	Parameters:


	\(\alpha > 1\): alpha (peak shape)


	\(\beta > 0\): beta (peak and undershoot rate)






	Definition: \(\frac{\beta^{\alpha}x^{\alpha-1}e^{-\frac{x}{\beta}}}{\Gamma(\alpha)} - \frac{1}{6}\frac{\beta^{\alpha + 10}x^{\alpha + 9}e^{-\frac{x}{\beta}}}{\Gamma(\alpha + 10)}\)








	HRFDoubleGamma3: 3-parameter double-gamma hemodynamic response function (fMRI). Parameter \(\alpha\) of the second gamma is fixed to the \(alpha\) of the first gamma using SPM




s default offset (10). Parameter \(\beta\) is tied between both gammas.



	Parameters:


	\(\alpha > 1\): alpha (peak shape)


	\(\beta > 0\): beta (peak and undershoot rate)


	\(c\): c (undershoot coefficient)






	Definition: \(\frac{\beta^{\alpha}x^{\alpha-1}e^{-\frac{x}{\beta}}}{\Gamma(\alpha)} - c\frac{\beta^{\alpha + 10}x^{\alpha + 9}e^{-\frac{x}{\beta}}}{\Gamma(\alpha + 10)}\)








	HRFDoubleGamma4: 4-parameter double-gamma hemodynamic response function (fMRI). Parameter \(\beta\) is tied between both gammas.


	Parameters:


	\(\alpha_1 > 1\): alpha_main (peak shape)


	\(\alpha_2 > 1\): alpha_undershoot (undershoot shape)


	\(\beta > 0\): beta (peak and undershoot rate)


	\(c\): c (undershoot coefficient)






	Definition: \(\frac{\beta^{\alpha_1}x^{\alpha_1-1}e^{-\frac{x}{\beta}}}{\Gamma(\alpha_1)} - c\frac{\beta^{\alpha_2}x^{\alpha_2 - 1}e^{-\frac{x}{\beta}}}{\Gamma(\alpha_2)}\)






	HRFDoubleGamma5: 5-parameter double-gamma hemodynamic response function (fMRI). All parameters are free.


	Parameters:


	\(\alpha_1 > 1\): alpha_main (peak shape)


	\(\alpha_2 > 1\): alpha_undershoot (undershoot shape)


	\(\beta_1 > 0\): beta_main (peak rate)


	\(\beta_2 > 0\): beta_undershoot (undershoot rate)


	\(c\): c (undershoot coefficient)






	Definition: \(\frac{\beta^{\alpha_1}x^{\alpha_1-1}e^{-\frac{x}{\beta_1}}}{\Gamma(\alpha_1)} - c\frac{\beta^{\alpha_2}x^{\alpha_2 - 1}e^{-\frac{x}{\beta_2}}}{\Gamma(\alpha_2)}\)










Interactions in CDR

In comparison to interactions in linear models, deconvolution introduces the additional complexity of needing to decide and specify whether interactions precede (impulse-level interactions) or follow (response-level interactions) the convolution step.
Impulse-level interactions consider interactions as events which may trigger a temporally diffuse response (i.e. a response to both A and B happening together at a particular point in time).
Response-level interactions capture non-additive effects of multiple (possibly convolved) variables; they do not get their own impulse responses.
Response-level interactions correspond to interactions in linear models and are almost always what you want except in the special case of linear (DiracDelta IRF) predictors, where impulse-level interactions should be used (just like in linear models).

CDR formulas use a simple syntax to distinguish these two types of interactions: impulse-level interactions are specified inside the first argument of convolution calls C(), while response-level interactions are specified outside them.
As in R, interaction terms are designated with :, as in A:B.
And as in R, for convenience, two-way cross-product interactions can be designated with * (e.g. A*B is shorthand for A + B + A:B) and multi-way cross-product interactions can be designated with power notation ^<INT> or **<INT> (e.g. (A+B+C)^3 equals A + B + C + A:B + B:C + A:C + A:B:C).
The following defines an impulse-level interaction between A and B underneath a Normal IRF kernel:

C(A:B, Normal())





The following defines a response-level interaction between Normal convolutions of A and B:

C(A, Normal()):C(B, Normal())





In order to fit interactions between convolved variables, the convolutions themselves must exist.
Therefore, unlike linear interactions, which can be fit even if their subcomponents are not included in the model, C(A, Normal()):C(B, Normal()) requires the existence of model estimates for both C(A, Normal()) and C(B, Normal()), and these terms are therefore automatically inserted when used by any response-level interactions.

Response-level interactions do not need to be convolved variables.
They can also be predictors supplied by the data as long as the predictors are response-aligned (i.e. measured concurrently with the responses, rather than the impulses).
For example, suppose we have a response-aligned variable C provided by our data.
We can interact responses with it, like so:

C(A, Normal()):C





This will fit a normal response to A, along with an estimate for the modulation of that response by C.
Unlike convolved inputs to response-level interactions, estimates for regular variables are not automatically added to the model.
In order to fit a separate (linear) effect for C, we could use the multiplication operator instead:

C(A, Normal())*C = C(A, Normal() + C + C(A, Normal()):C





For convenience, response-level interactions distribute across the inputs to a convolution call C().
Thus, interacting a variable with a convolution of multiple inputs is equivalent to interacting the variable with a convolution of each of the inputs:

C(A + B, Gamma()):C = C(A + B, Gamma()) + C(A, Gamma()):C + C(B, Gamma()):C





Similarly, interacting multiple convolution calls each containing multiple inputs is equivalent to defining interactions over the Cartesian-product of the responses to the two sets of inputs:

C(A + B, Gamma()):C(C + D, EMG()) = C(A + B, Gamma()) + C(C + D, EMG()) + \
                                    C(A, Gamma()):C(C, EMG()) + C(B, Gamma()):C(C, EMG()) + \
                                    C(A, Gamma()):C(D, EMG()) + C(B, Gamma()):C(D, EMG())





Order of operations between term expansions can be enforced through parentheses:

(A*B):E = A:E + B:E + A:B:E
A*(B:E) = A + B:E + A:B:E







Automatic Term Expansion

For convenience, the C() function distributes the impulse response family over multiple +-delimited terms in its first argument.
Therefore, the following two expressions are equivalent:

C(A + B, Gamma())
C(A, Gamma()) + C(B, Gamma())





R-style expansions for interactions are also available, as discussed above.
IRF distribute across the expansion of interaction terms, such that the following expressions are equivalent:

C((A + B + C)**3, Gamma())
C(A, Gamma()) + C(B, Gamma()) + C(C, Gamma()) + C(A:B, Gamma()) + C(B:C, Gamma()) + C(A:C, Gamma()) + C(A:B:C, Gamma())





Categorical variables are automatically discovered and expanded in CDR models.
This process imposes a transformation on the model.
For example, imagine that predictor B in the following model turns out to be categorical in the data set with categories B1, B2, and B3:

C(A + B, EMG())





When the CDR model is initialized, the categorical nature of B is detected and the model is expanded out as:

C(A + B2 + B3, EMG())





However, they can be included simply by adding binary indicator vectors for each of \(n-1\) of the levels of the variable to the input data as a preprocessing step, then defining the model in terms of the binary indicators.

Note that the term expansions described above add separate IRF for each term in the expansion.
For example, C(A + B, Gamma()) adds two distinct Gamma IRF parameterizations to the model, one for each predictor.
It is also possible to tie IRF between predictor variables (details below).

Note also that (unlike R) redundant terms are not automatically collapsed, so care must be taken to ensure that no duplicate terms are produced via term expansion.



Random Effects

Random effects in CDR are specified using the following syntax:

(RANDOM_TERMS | GROUPING_FACTOR)





where RANDOM_TERMS are terms as they would appear in the RHS of the model described above and GROUPING_FACTOR is the name of a categorical variable in the input that is used to define the random effect (e.g. a vector of ID’s of human subjects).
As in the case of fixed effects, a random intercept is automatically added unless 0 appears among the random terms.
Mixed models are constructed simply by adding random effects to fixed effects in the RHS of the formula.
For example, to construct a mixed model with a fixed and by-subject random coefficient for a Gaussian IRF for predictor A along with a random intercept by subject, the following RHS would be used:

C(A, Normal()) + (C(A, Normal()) | subject)





IRF in random effects statements are treated as tied to any corresponding fixed effects unless explicitly distinguished by distinct IRF ID’s (see section below on parameter tying).

The above formula uses a single parameterization for the Gaussian IRF and fits by-subject coefficients for it.
However it is also possible to fit by-subject IRF parameterizations.
This can be accomplished by adding ran=T to the IRF call, as shown below:

C(A, Normal()) + (C(A, Normal(ran=T)) | subject)





This formula will fit separate coefficients and IRF shapes for this predictor for each subject.

An important complication in fitting mixed models with CDR is that the relevant grouping factor is determined by the current regression target, not the properties of the independent variable observations in the series history.
This means that random effects are only guaranteed to be meaningful when fit using grouping factors that are constant for the entire series (e.g. the ID of the human subject completing the experiment).
Random effects fit for grouping factors that vary during the experiment should therefore be avoided unless they are intercept terms only, which are not affected by the temporal convolution.



Parameter Initialization

IRF parameters can be initialized for a given convolutional term by specifying their initial values in the IRF call, using the parameter name as the keyword (see supported IRF and their associated parameters above).
For example, to initialize a Gamma IRF with \(\alpha = 2\) and \(\beta = 2\) for predictor A, use the following call:

C(A, Gamma(alpha=2, beta=2))





These values will serve as initializations in both CDRMLE and CDRBayes, and in CDRBayes they will additionally serve as the mean of the prior distribution for that parameter.
If no initialization is specified, defaults will be used.
These defaults are not guaranteed to be plausible for your particular application and may have a detrimental impact on training.
Therefore, it is generally a good idea to think carefully in advance about what kinds of IRF shapes are a priori reasonable and choose initializations in that range.

Note that the initialization values are on the constrained space, so make sure to respect the constraints when choosing them.
For example, \(\alpha\) of the Gamma distribution is constrained to be > 0, so an initial \(\alpha\) of <=0 will result in incorrect behavior.
However, keep in mind that for CDRBayes, prior variances are necessarily on the unconstrained space and get squashed by the constraint function, so choosing initializations that are very close to constraint boundaries can indirectly tighten the prior.
For example, choosing an initialization \(\alpha = 0.001\) for the Gamma distribution will result in a much tighter prior around small values of \(\alpha\).

Initializations for irrelevant parameters in ill-specified formulas will be ignored and the defaults for the parameters will be used instead.
For example, if the model receives the IRF specification Normal(alpha=1, beta=1), it will initialize a Normal IRF at \(\mu=0\), \(\sigma=1\) (the defaults for this kernel), since \(\alpha\) and \(\beta\) are not recognized parameter names for the Normal distribution.
Therefore, make sure to match the parameter names above when specifying parameter defaults.
The correctness of initializations can be checked in the Tensorboard logs.



Using Constant (Non-trainable) Parameters

By default, CDR trains all the variables that parameterize an IRF kernel (e.g. both \(\mu\) and \(\sigma\) for a Gaussian IRF kernel).
But in some cases it’s useful to treat certain IRF parameters as constants and leave them untrained.
To do this, specify a list of trainable parameters with the keyword argument trainable, using Python list syntax.
For example, to specify a ShiftedGamma IRF in which the shift parameter \(\delta\) is held constant at -1, use the following IRF specification:

ShiftedGamma(delta=-1, trainable=[alpha, beta])





The model will then only train the \(\alpha\) and \(\beta\) parameters of the response.
As with parameter initialization, unrecognized parameter names in the trainable argument will be ignored, and parameter name mismatches can result in more parameters being held constant than intended.
For example, the IRF specification Normal(trainable=[alpha, beta]), will result in an (untrainable) Normal IRF with all parameters held fixed at their defaults.
It is therefore important to make sure that parameter names match those given above.
The correctness of the trainable specification can be checked in the Tensorboard logs, as well as by the number of trainable parameters reported to standard error at the start of CDR training.
Constant parameters will show 0 trainable parameters.



Parameter Tying

A convolutional term in a CDR model is factored into two components, an IRF component with appropriate parameters and a coefficient governing the overall amplitude of the estimate.
Unless otherwise specified, both of these terms are fit separately for every predictor in the model.
However, parameter tying is possible by passing keyword arguments to the IRF calls in the model formula.
Coefficients can be tied using the coef_id argument, and IRF parameters can be tied using the irf_id argument.
For example, the following RHS fits separate IRF and coefficients for each of A and B:

C(A, Normal()) + C(B, Normal())





The following fits a single IRF (called “IRF_NAME”) but separate coefficients for A and B:

C(A, Normal(irf_id=IRF_NAME)) + C(B, Normal(irf_id=IRF_NAME))





The following fits separate IRF but a single coefficient (called “COEF_NAME”) for both A and B:

C(A, Normal(coef_id=COEF_NAME)) + C(B, Normal(coef_id=COEF_NAME))





And the following fits a single IRF (called “IRF_NAME”) and a single coefficient (called “COEF_NAME”), both of which are shared between A and B:

C(A, Normal(irf_id=IRF_NAME, coef_id=COEF_NAME)) + C(B, Normal(irf_id=IRF_NAME, coef_id=COEF_NAME))







Transforming Variables

CDR provides limited support for automatic variable transformations based on model formulas.
As in R formulas, a transformation is applied by wrapping the predictor name in the transformation function.
For example, to fit a Gamma IRF to a log transform of predictor A, the following is added to the RHS:

C(log(A), Gamma())





Transformations may be applied to the predictors and/or the response.

The following are the currently supported transformations:


	log(): Applies a natural logarithm transformation to the variable


	log1p(): Adds 1 to the variable an applies a natural logarithm transformation (useful if predictor can include 0)


	exp(): Exponentiates the variable


	z(): Z-transforms the variable (subtracts its mean and divides by its standard deviation)


	c(): 0-centers the variable (subtracts its mean)


	s(): Scales the variable (divides by its standard deviation)




Other transformations must be applied via data preprocessing.



Pseudo Non-Parametric IRFs

CDR also supports pseudo non-parametric IRFs in the form of Gaussian kernel functions (linear combination of Gaussians or LCG).
Instead of a parametric IRF kernel, the model implements the IRF as a sum of Gaussian kernel functions whose location, spread, and height can be optimized by the model.
The advantage of LCG IRFs is that they do not require precommitment to a particular functional form for the IRF.
The disadvantage is that fitting them is slower because they involve more parameters and computation.

The kernels themselves have a number of free parameters which are specified by the name of the kernel in the IRF call of the model formula.
The syntax for an LCG IRF kernel is as follows:

LCG(b([0-9]+))?





This is a string representation of a function call LCG with optional keyword argument b.

The keyword argument is defined as follows:



	b (bases): int, number of bases (control points). Default: 10.









IRF Composition

In some cases it may be desirable to decompose the response into multiple convolutions of an impulse.
For example, it is possible that the BOLD response in fMRI consists underlyingly of 2 convolutional responses: a neural response that convolves the impulse into a timecourse of neural activation, which is then convolved with a hemodynamic response into a BOLD signal.
In this case, it would be desirable to be able to model the BOLD response as a composition of neural and hemodynamic responses.

Exact parametric composition of IRF is not possible in the general case because many pairs of IRF do not have a tractable analytical convolution.
Instead, the CDR package uses a discrete approximation to the continuous integral of composed IRF by (1) computing the value of each IRF for some number of interpolation points, (2) computing their convolution via FFT, and (3) rescaling by the temporal distance between interpolation points.
The number of interpolation points is defined by the model’s n_interp initialization parameter.

To compose IRF in a model, simply insert one IRF call into the first argument position of another IRF call.
For example, the following first convolves impulse A with a normal IRF and then convolves this convolved response with an exponential IRF:

C(A, Exp(Normal()))





Because convolution has the associative property, the order of composition does not matter, and the above is equivalent to:

C(A, Normal(Exp()))





The advantage of IRF composition is that it affords the possibility of discovering the structure of latent responses that are not directly observable in the measured response, as in the example described above.
The disadvantage is that it is much more computationally expensive due to the interpolation and FFT steps required.

Care must also be taken when using IRF composition to avoid constructing unidentifiable models.
For example, the convolution of two Gaussians \(N(\mu_1, \sigma_1^2)\) and \(N(\mu_2, \sigma_2^2)\) is known to be \(N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)\).
As a result, the following composed IRF has infinitely many solutions, and the resulting model is unidentifiable:

C(A, Normal(Normal()))





CDR is not able to recognize and flag identifiability problems and it will happily find a solution to such a model, disguising the fact that there are infinitely many other optimal solutions.
It is up to the user to think carefully about whether the model structure could introduce such problems.
For example, in the BOLD example discussed above, the neural response is predictor-specific while the hemodynamic response is predictor-independent given the neural response.
The two responses can thus be separated via parameter tying of the hemodynamic response portion (see below), requiring all predictors to share a single hemodynamic response and forcing predictor-level variation into the neural response alone.
NOTE:: Only parametric (not neural network) IRFs can be composed in this way. Numerical integration of neural network IRFs is computationally prohibitive.




Neural Network Components

CDR allows two kinds of neural network components in the model architecture.
First, rather than using a parametric IRF kernel, you can use a deep neural network IRF, simply by using the term NN() as the second argument of a C() call:

y ~ C(A + B, NN())





NN hyperparameters can either be globally defined through keywords in [cdr_settings] or locally defined in the formula via keyword arguments to NN() (for available options, see CDR Configuration Files).
The main reason to define a hyperparameter locally within the formula is if you want to override a global setting for a particular neural network component.
For example, imagine we have two predictors A and B and we want to constrain the response to be linear on A (but not B).
We can achieve this by varying the value of the input_dependent_irf setting (which determines whether the IRF is allowed to differ at different input values, opening the possibility of non-linear responses), as follows:

[model_CDR_example]
input_dependent_irf = True
formula = y ~ C(A, NN(input_dependent_irf=False)) + C(B, NN())





In the above, the default setting for input_dependent_irf is set to True in the model settings (thus, non-linear by default), but this default is overridden in the NN response to A by using the keyword argument input_dependent_irf=False in the relevant NN() call of the model formula.
Using this definition, the IRF to B depends on the value of B, but the IRF to A is independent of the value of A, and thus linear.

Just like other IRFs, neural network IRFs can participate in both fixed and random effects.
For example, the following defines a single population-level neural network IRF but allows the coefficients to vary by subject:

y ~ C(A + B, NN()) + (C(A + B, NN()) | subject)





By contrast, the following allows by-subject variation in both in the coefficients and in the neural network parameters themselves:

y ~ C(A + B, NN()) + (C(A + B, NN(ran=T)) | subject)





In addition, formulas can include trainable neural network transformations of predictors, simply by placing NN() in the first argument of a C() call and entering the sum of predictors to transform as its argument:

y ~ C(NN(A + B + C), Normal())





The above formula will first apply a feedforward neural network to transform the vector [A, B, C] into a scalar, which is then treated as a predictor with a Normal IRF kernel.
Neural net predictor transforms can also take neural network IRFs:

y ~ C(NN(A + B + C), NN())





In this case, one NN defines a transform on A, B, and C, and another defines an IRF that describes the diffusion of the effect of that transformed value over time.
Note that in the above formula, the two NNs operate independently, one transforming data, the other convolving it.
But this implementation also supports input-dependent NN IRFs that take the input values into account in determining the IRF shape.
Input-dependent IRFs can be used by setting the input_dependent_irf field to True in the [cdr_settings] section of the config.
Input-dependent IRFs make predictor transformations unnecessary (since the IRF implicitly represents a transformation of the predictors), so the above formula would only make sense if input-dependence were turned off.

Parametric IRFs distribute over their inputs. Thus, the following two formulas are equivalent, and both express distinct IRF transforms for the variables A and B:

y ~ C(A + B, Normal())
y ~ C(A, Normal()) + C(B, Normal())





However, this is not the case for deep neural IRFs, where the elements in the first argument of C() determine the number of convolution weights that the neural IRF will generate.
Thus, the following two formulas are not equivalent:

y ~ C(A + B, NN())
y ~ C(A, NN()) + C(B, NN())





The first defines a single NN IRF with two outputs that jointly convolves A and B.
The second defines two distinct NN IRFs, each with one output, that separately convolve A and B.

Neural components can be flexibly combined with non-neural components.
For example, the following treats A as a linear (DiracDelta) predictor, convolves B with a neural IRF, and convolves C with a Normal IRF:

y ~ A + C(B, NN()) + C(C, Normal())







Multivariate Responses

CDR can jointly model multiple response variables.
Unless the model contains neural components, this is equivalent to fitting a distinct CDR model to each response vector, but it can be more computationally efficient.
When neural components are used, distributed representations entail that multivariate models can substantively differ from separate univariate models.
Information about one response variable can inform inferences made about other response variables.

To model multiple response variables, simply enter them all on the left-hand side of the model formula, delimited by +.
For example, the following jointly models y1 and y2 as a function of A and B:

y1 + y2 ~ C(A + B, Gamma())









            

          

      

      

    

  

    
      
          
            
  
IRF Trees in CDR

The network of IRFs for each CDR model are represented by the implementations in this package as trees from which properties can be read off for the purposes of model construction.
This is an implementation detail that will not be pertinent to most users, especially those primarily training and using CDR models through the bundled executables.
However, for users who want to program with CDR classes or directly interface with the associated Formula class, which is used to store and manipulate information about the model structure, this reference provides a conceptual overview of tree representations of CDR impulse response structures.

There are several reasons for representing IRFs as nodes on a tree. In particular, tree representations facilitate:



	Factorization of separable model components, especially impulses, coefficients, and IRFs  (see discussion below)


	IRF composition: convolving multiple IRF with each other in a hierarchical fashion


	Parameter tying: sharing a single IRF or coefficient across multiple portions of the model







Note that these components cannot be cleanly factorized in CDRNN, so CDRNN “trees” are flat.
The remainder of this page applies only to CDR.


Factorization

CDR models contain impulses, coefficients, and IRFs, each of whose structure can be separately manipulated.
Impulses are timestamped data streams that constitute the predictors of the model.
Impulses are computed from the input data prior to entering the CDR computation graph.

Coefficients govern the amplitude of the response to a predictor.
Specifically, the IRF for a given predictor is multiplied by a coefficient governing the magnitude and sign of the overall response.
Because multiplication distributes over convolution, coefficients are only needed at the point at which an IRF is convolved with an impulse.
In hierarchical models involving convolution of multiple IRFs together, the coefficient can be seen as the product of all coefficients on all composed IRFs.
It is therefore desirable to restrict coefficients only to those IRF that “make contact” with the impulse data.

IRFs govern the shape of the response to a predictor.
The response is subsequently scaled using a coefficient.
Arbitrary IRF can be convolved together in a hierarchical fashion using a fast Fourier transform-based discrete approximation to the continuous convolution.

Tree structures permit natural separation of these three components.
Specifically, the CDR IRF tree consists of nodes, each of which represents the application of an IRF.
IRF composition is represented in the tree as dominance: parent IRF are convolved with their children, which are they convolved with their children, etc.
Coefficients are disallowed except at terminal IRF nodes, i.e. “leaves” of the tree that have no children.
In this implementation, Terminal is distinguished as special type of IRF kernel.
The leaves of the IRF tree must always and only be Terminal.
Only Terminal IRF nodes are permitted to have coefficients.
Attempts to specify coefficients at other portions of the tree are ignored.
Terminals always have a 1-to-1 link to an impulse contained in the data.

Thus, impulses, coefficients, and IRFs are kept separate by representing the IRF as nodes in a tree and the impulses and coefficients as decorations on a distinguished Terminal node type.



IRF composition

All IRF trees are rooted at a special ROOT node, and subsequent application and composition of IRF is represented by tree structures dominated by ROOT.
A simple model with no IRF composition will have a tree depth of 3:

ROOT --> IRF --> Terminals.





Models involving composition of IRF will have greater depth, as composition of IRF is represented as dominance relations between them.
For example, imagine that the IRF for a given predictor is expected to be a Gamma convolved with another Gamma, which is then convolved with a Normal.
The path through the tree describing this structure will be:

ROOT --> Gamma1 --> Gamma2 --> Terminal





At the terminal, the composed IRF is multiplied by its coefficient and then convolved with its associated impulse.
Although IRF composition in CDR respects the hierarchical order in which the IRF are specified, in most cases order of composition does not matter because of associativity of convolution.



Parameter tying

IRF can be tied in CDR, a property which can be conveniently represented via branching structures in the tree.
Specifically, if a single IRF is convolved with (1) multiple downstream IRF in a composition hierarchy or (2) multiple impulses, this fact can be represented by attaching multiple child nodes to a node representing the IRF.
For example, consider the following two IRF trees involving impulses A, B, and C:

1)
            ROOT
        /     |     \
  NormalA  NormalB  NormalC
     |        |        |
   TermA    TermB    TermC

2)
        ROOT
          |
        Normal
      /   |    \
  TermA TermB TermC





In Tree (1), each terminal has its own IRF, so the branching occurs below ROOT, while in Tree (2), a single IRF is shared by all three impulses, so the branch occurs below IRF.
More complex models could be formed e.g. by replacing one of the terminals in these examples with other IRF treelets, and so on.

Tying of coefficients is also supported but this is not represented in the tree structure.
It is enforced simply by requiring multiple terminals to share the same value for the coefficient ID property.



CDR tree summaries

In the CDR model summary, the IRF tree is printed in string format with indentation representing dominance.
The ID of each IRF on the tree is printed on its own line, along with other metadata when relevant (such as trainable params and associated random grouping factors).
For example, Tree (1) above would be represented as follows:

ROOT
  Normal.A; trainable params: mu, sigma
    Normal.A-Terminal.A
  Normal.B; trainable params: mu, sigma
    Normal.B-Terminal.B
  Normal.C; trainable params: mu, sigma
    Normal.C-Terminal.C





while Tree (2) would be represented as follows:

ROOT
  Normal; trainable params: mu, sigma
    Normal-Terminal.A
    Normal-Terminal.B
    Normal-Terminal.C









            

          

      

      

    

  

    
      
          
            
  
CDR Package API

Complete API for all public classes and methods in this package.


cdr.backend module



cdr.config module


	
class cdr.config.Config(path)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Parses an *.ini file and stores settings needed to define a set of CDR experiments.


	Parameters:

	path – Path to *.ini file






	
build_cdr_settings(settings, add_defaults=True, global_settings=None, is_cdr=True, is_cdrnn=False)

	Given a settings object parsed from a config file, compute CDR parameter dictionary.


	Parameters:

	
	settings – settings from a ConfigParser object.


	add_defaults – bool; whether to add default settings not explicitly specified in the config.


	global_settings – dict or None; dictionary of global defaults for parameters missing from settings.


	is_cdr – bool; whether this is a CDR(NN) model.


	is_cdrnn – bool; whether this is a CDRNN model.






	Returns:

	dict; dictionary of settings key-value pairs.










	
expand_submodels()

	Expand models into cross-validation folds and/or ensembles.

return: None






	
set_model(model_name=None)

	Change internal state to that of model named model_name.
Config instances can store settings for multiple models.
set_model() determines which model’s settings are returned by Config getter methods.


	Parameters:

	model_name – str; name of target model



	Returns:

	None














	
class cdr.config.PlotConfig(path=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Parses an *.ini file and stores settings needed to define CDR plots


	Parameters:

	path – Path to *.ini file






	
build_plot_settings(settings)

	Given a settings object parsed from a config file, compute plot parameters.


	Parameters:

	settings – settings from a ConfigParser object.



	Returns:

	dict; dictionary of settings key-value pairs.















cdr.data module


	
cdr.data.add_responses(names, y)

	Add response variable(s) to a dataframe, applying any preprocessing required by the formula string.


	Parameters:

	
	names – str or list of str; name(s) of dependent variable(s)


	y – pandas DataFrame; response data.






	Returns:

	pandas DataFrame; response data with any missing ops applied.










	
cdr.data.build_CDR_impulse_data(X, first_obs, last_obs, X_in_Y_names=None, X_in_Y=None, impulse_names=None, history_length=128, future_length=0, int_type='int32', float_type='float32')

	Construct impulse data arrays in the required format for CDR fitting/evaluation for a single response array.


	Parameters:

	
	X – list of pandas tables; impulse (predictor) data.


	first_obs – list of index vectors (list, pandas series, or numpy vector) of first observations; the list contains vectors of row indices, one for each element of X, of the first impulse in the time series associated with the response. If None, inferred from Y.


	last_obs – list of index vectors (list, pandas series, or numpy vector) of last observations; the list contains vectors of row indices, one for each element of X, of the last impulse in the time series associated with the response. If None, inferred from Y.


	X_in_Y_names – list of str; names of predictors contained in Y rather than X. If None, no such predictors.


	X_in_Y – pandas DataFrame or None; table of predictors contained in Y rather than X. If None, no such predictors.


	impulse_names – list of str; names of columns in X to be used as impulses by the model. If None, all columns returned.


	history_length – int; maximum number of history (backward) observations.


	future_length – int; maximum number of future (forward) observations.


	int_type – str; name of int type.


	float_type – str; name of float type.






	Returns:

	triple of numpy arrays; let N, T, I, R respectively be the number of rows in Y, history length, number of impulse dimensions, and number of response dimensions. Outputs are (1) impulses with shape (N, T, I), (2) impulse timestamps with shape (N, T, I), and impulse mask with shape (N, T, I).










	
cdr.data.build_CDR_response_data(responses, Y=None, first_obs=None, last_obs=None, Y_time=None, Y_gf=None, X_in_Y_names=None, X_in_Y=None, Y_category_map=None, response_to_df_ix=None, gf_names=None, gf_map=None)

	Construct response data arrays in the required format for CDR fitting/evaluation for one or more response arrays.


	Parameters:

	
	responses – list of str; names of columns in Y to be used as responses (dependent variables) by the model.


	Y – list of pandas tables, or None; response data. If None, does not return a response array.


	first_obs – list of list of index vectors (list, pandas series, or numpy vector) of first observations, or None; the list contains one element for each response array. Inner lists contain vectors of row indices, one for each element of X, of the first impulse in the time series associated with each response. If None, inferred from Y.


	last_obs – list of list of index vectors (list, pandas series, or numpy vector) of last observations, or None; the list contains one element for each response array. Inner lists contain vectors of row indices, one for each element of X, of the last impulse in the time series associated with each response. If None, inferred from Y.


	Y_time – list of response timestamp vectors (list, pandas series, or numpy vector), or None; vector(s) of response timestamps, one for each response array. Needed to timestamp any response-aligned predictors (ignored if none in model).


	Y_gf – list of pandas DataFrame, or None; vector(s) of response timestamps, one for each response array. Data frames containing random grouping factor levels, if applicable.


	X_in_Y_names – list of str; names of predictors contained in Y rather than X (must be present in all elements of Y). If None, no such predictors.


	X_in_Y – list of pandas DataFrame or None; tables (one per response array) of predictors contained in Y rather than X (must be present in all elements of Y). If None, no such predictors.


	Y_category_map – dict or None; map from category labels to integers for each categorical response.


	response_to_df_ix – dict or None; map from response names to lists of indices of the response files that contain them.


	gf_names – list or None; list of names of random grouping factor variables. If None and Y_gf provided, will use all columns of Y_gf.


	gf_map – list of dict or None; list maps from random grouping factor levels to their indices, one map per grouping factor variable in gf_names.






	Returns:

	7-tuple of numpy arrays; let N, R, XF, YF, Z, and K respectively be the number of rows (sum total number of rows in Y), number of response dimensions, number of distinct predictor files (X), number of distinct response files (Y), number of random grouping factor variables, and number of response_aligned predictors. Outputs are (1) responses with shape (N, R) or None if Y is None, (2) an XF-tuple of first observation vectors indexing start indices for each entry in X, (3) a YF-tuple of first observation vectors indexing end indices for each entry in X, (4) response timestamps with shape (N,), (5) response masks (masking out any missing response variables per row) with shape (N, R), (6) random grouping factor matrix with shape (N, Z), or None if no random grouping factors provided, and (7) response-aligned predictors with shape (N, K).










	
cdr.data.c(df)

	Zero-center pandas series or data frame


	Parameters:

	df – pandas Series or DataFrame; input date



	Returns:

	pandas Series or DataFrame; centered data










	
cdr.data.compare_elementwise_perf(a, b, y=None, mode='err')

	Compare model performance elementwise.


	Parameters:

	
	a – numpy vector; vector of elementwise scores (or predictions if mode is corr) for model a.


	b – numpy vector; vector of elementwise scores (or predictions if mode is corr) for model b.


	y – numpy vector or None; vector of observations. Used only if mode is corr.


	mode – str; Type of performance metric. One of err, loglik, or corr.






	Returns:

	numpy vector; vector of elementwise performance differences










	
cdr.data.compute_filter(y, field, cond)

	Compute filter given a field and condition


	Parameters:

	
	y – pandas DataFrame; response data.


	field – str; name of column on whose values to filter.


	cond – str; string representation of condition to use for filtering.






	Returns:

	numpy vector; boolean mask to use for pandas subsetting operations.










	
cdr.data.compute_filters(Y, filters=None)

	Compute filters given a filter map.


	Parameters:

	
	Y – pandas DataFrame; response data.


	filters – list; list of key-value pairs mapping column names to filtering criteria for their values.






	Returns:

	numpy vector; boolean mask to use for pandas subsetting operations.










	
cdr.data.compute_partition(y, modulus, n)

	Given a splitID column, use modular arithmetic to partition data into n subparts.


	Parameters:

	
	y – pandas DataFrame; response data.


	modulus – int; modulus to use for splitting, must be at least as large as n.


	n – int; number of subparts in the partition.






	Returns:

	list of numpy vectors; one boolean vector per subpart of the partition, selecting only those elements of y that belong.










	
cdr.data.compute_splitID(y, split_fields)

	Map tuples in columns designated by split_fields into integer ID to use for data partitioning.


	Parameters:

	
	y – pandas DataFrame; response data.


	split_fields – list of str; column names to use for computing split ID.






	Returns:

	numpy vector; integer vector of split ID’s.










	
cdr.data.compute_time_mask(X_time, first_obs, last_obs, history_length=128, future_length=0, int_type='int32', float_type='float32')

	Compute mask for expanded impulse data zeroing out non-existent impulses.


	Parameters:

	
	X_time – pandas Series; timestamps associated with each impulse in X.


	first_obs – pandas Series; vector of row indices in X of the first impulse in the time series associated with each response.


	last_obs – pandas Series; vector of row indices in X of the last preceding impulse in the time series associated with each response.


	history_length – int; maximum number of history (backward) observations.


	future_length – int; maximum number of future (forward) observations.


	int_type – str; name of int type.


	float_type – str; name of float type.






	Returns:

	numpy array; boolean impulse mask.










	
cdr.data.corr_cdr(X_2d, impulse_names, impulse_names_2d, time, time_mask)

	Compute correlation matrix, including correlations across time where necessitated by 2D predictors.


	Parameters:

	
	X_2d – numpy array; the impulse data. Must be of shape (batch_len, history_length+future_length, n_impulses), can be computed from sources by build_CDR_impulse_data().


	impulse_names – list of str; names of columns in X_2d to be used as impulses by the model.


	impulse_names_2d – list of str; names of columns in X_2d that designate to 2D predictors.


	time – 3D numpy array; array of timestamps for each event in X_2d.


	time_mask – 3D numpy array; array of masks over padding events in X_2d.






	Returns:

	pandas DataFrame; the correlation matrix.










	
cdr.data.expand_impulse_sequence(X, X_time, first_obs, last_obs, window_length, int_type='int32', float_type='float32', fill=0.0)

	Expand out impulse stream in X for each response in the target data.


	Parameters:

	
	X – pandas DataFrame; impulse (predictor) data.


	X_time – pandas Series; timestamps associated with each impulse in X.


	first_obs – pandas Series; vector of row indices in X of the first impulse in the time series associated with each response.


	last_obs – pandas Series; vector of row indices in X of the last preceding impulse in the time series associated with each response.


	window_length – int; number of steps in time dimension of output


	int_type – str; name of int type.


	float_type – str; name of float type.


	fill – float; fill value for padding cells.






	Returns:

	3-tuple of numpy arrays; the expanded impulse array, the expanded timestamp array, and a boolean mask zeroing out locations of non-existent impulses.










	
cdr.data.filter_invalid_responses(Y, dv, crossval_factor=None, crossval_fold=None)

	Filter out rows with non-finite responses.


	Parameters:

	
	Y – pandas table or list of pandas tables; response data.


	dv – str or list of str; name(s) of column(s) containing the dependent variable(s)


	crossval_factor – str or None; name of column containing the selection variable for cross validation. If None, no cross validation filtering.


	crossval_fold – list or None; list of valid values for cross-validation selection. Used only if crossval_factor is not None.






	Returns:

	2-tuple of pandas DataFrame and pandas Series; valid data and indicator vector used to filter out invalid data.










	
cdr.data.get_first_last_obs_lists(y)

	Convenience utility to extract out all first_obs and last_obs columns in Y sorted by file index


	Parameters:

	y – pandas DataFrame; response data.



	Returns:

	pair of list of str; first_obs column names and last_obs column names










	
cdr.data.get_rangf_array(Y, rangf_names, rangf_map)

	Collect random grouping factor indicators as numpy integer arrays that can be read by Tensorflow.
Returns vertical concatenation of GF arrays from each element of Y.


	Parameters:

	
	Y – pandas table or list of pandas tables; response data.


	rangf_names – list of str; names of columns containing random grouping factor levels (order is preserved, changing the order will change the resulting array).


	rangf_map – list of dict; map for each random grouping factor from levels to unique indices.






	Returns:

	










	
cdr.data.get_time_windows(X, Y, series_ids, forward=False, window_length=128, t_delta_cutoff=None, verbose=True)

	Compute row indices in X of initial and final impulses for each element of y.
Assumes time series are already sorted by series_ids.


	Parameters:

	
	X – pandas DataFrame; impulse (predictor) data.


	Y – pandas DataFrame; response data.


	series_ids – list of str; column names whose jointly unique values define unique time series.


	forward – bool; whether to compute forward windows (future inputs) or backward windows (past inputs, used if forward is False).


	window_length – int; maximum size of time window to consider. If np.inf, no bound on window size.


	t_delta_cutoff – float or None; maximum distance in time to consider (can help improve training stability on data with large gaps in time). If 0 or None, no cutoff.


	verbose – bool; whether to report progress to stderr






	Returns:

	2-tuple of numpy vectors; first and last impulse observations (respectively) for each response in y










	
cdr.data.preprocess_data(X, Y, formula_list, series_ids, filters=None, history_length=128, future_length=0, t_delta_cutoff=None, all_interactions=False, verbose=True, debug=False)

	Preprocess CDR data.


	Parameters:

	
	X – list of pandas tables; impulse (predictor) data.


	Y – list of pandas tables; response data.


	formula_list – list of Formula; CDR formula for which to preprocess data.


	series_ids – list of str; column names whose jointly unique values define unique time series.


	filters – list; list of key-value pairs mapping column names to filtering criteria for their values.


	history_length – int; maximum number of history (backward) observations.


	future_length – int; maximum number of future (forward) observations.


	t_delta_cutoff – float or None; maximum distance in time to consider (can help improve training stability on data with large gaps in time). If 0 or None, no cutoff.


	all_interactions – bool; add powerset of all conformable interactions.


	verbose – bool; whether to report progress to stderr


	debug – bool; print debugging information






	Returns:

	7-tuple; predictor data, response data, filtering mask, response-aligned predictor names, response-aligned predictors, 2D predictor names, and 2D predictors










	
cdr.data.s(df)

	Rescale pandas series or data frame by its standard deviation


	Parameters:

	df – pandas Series or DataFrame; input date



	Returns:

	pandas Series or DataFrame; rescaled data










	
cdr.data.split_cdr_outputs(outputs, lengths)

	Takes a dictionary of arbitrary depth containing CDR outputs with their labels as keys and splits each output into
a list of outputs with lengths corresponding to lengths. Useful for aligning CDR outputs to response files,
since multiple response files can be provided, which are underlyingly concatenated by CDR.
Recursively modifies the dict in place.


	Parameters:

	
	outputs – dict of arbitrary depth with numpy arrays at the leaves; the source CDR outputs


	lengths – array-like vector of lengths to split the outputs into






	Returns:

	dict; same key-val structure as outputs but with each leaf split into a list of len(lengths) vectors, one for each length value.










	
cdr.data.z(df)

	Z-transform pandas series or data frame


	Parameters:

	df – pandas Series or DataFrame; input date



	Returns:

	pandas Series or DataFrame; z-transformed data











cdr.formula module


	
class cdr.formula.Formula(bform_str, standardize=True)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A class for parsing R-style mixed-effects CDR model formula strings and applying them to CDR data matrices.


	Parameters:

	bform_str – str; an R-style mixed-effects CDR model formula string






	
ablate_impulses(impulse_ids)

	Remove impulses in impulse_ids from fixed effects (retaining in any random effects).


	Parameters:

	impulse_ids – list of str; impulse ID’s



	Returns:

	None










	
apply_formula(X, Y, X_in_Y_names=None, all_interactions=False, series_ids=None)

	Extract all data and compute all transforms required by the model formula.


	Parameters:

	
	X – list of pandas tables; impulse data.


	Y – list of pandas tables; response data.


	X_in_Y_names – list or None; List of column names for response-aligned predictors (predictors measured for every response rather than for every input) if applicable, None otherwise.


	all_interactions – bool; add powerset of all conformable interactions.


	series_ids – list of str or None; list of ids to use as grouping factors for lagged effects. If None, lagging will not be attempted.






	Returns:

	triple; transformed X, transformed y, response-aligned predictor names










	
apply_op(op, arr)

	Apply op op to array arr.


	Parameters:

	
	op – str; name of op.


	arr – numpy or pandas array; source data.






	Returns:

	numpy array; transformed data.










	
apply_op_2d(op, arr, time_mask)

	Apply op to 2D predictor (predictor whose value depends on properties of the response).


	Parameters:

	
	op – str; name of op.


	arr – numpy or array; source data.


	time_mask – numpy array; mask for padding cells






	Returns:

	numpy array; transformed data










	
apply_ops(impulse, X)

	Apply all ops defined for an impulse


	Parameters:

	
	impulse – Impulse object; the impulse.


	X – list of pandas tables; table containing the impulse data.






	Returns:

	pandas table; table augmented with transformed impulse.










	
apply_ops_2d(impulse, X_2d_predictor_names, X_2d_predictors, time_mask)

	Apply all ops defined for a 2D predictor (predictor whose value depends on properties of the response).


	Parameters:

	
	impulse – Impulse object; the impulse.


	X_2d_predictor_names – list of str; names of 2D predictors.


	X_2d_predictors – numpy array; source data.


	time_mask – numpy array; mask for padding cells






	Returns:

	2-tuple; list of new predictor name, numpy array of predictor values










	
static bases(family)

	Get the number of bases of a spline kernel.


	Parameters:

	family – str; name of IRF family



	Returns:

	int or None; number of bases of spline kernel, or None if family is not a spline.










	
build(bform_str, standardize=True)

	Construct internal data from formula string


	Parameters:

	bform_str – str; source string.



	Returns:

	None










	
categorical_transform(X)

	Get transformed formula with categorical predictors in X expanded.


	Parameters:

	X – list of pandas tables; input data.



	Returns:

	Formula; transformed Formula object










	
compute_2d_predictor(predictor_name, X, first_obs, last_obs, history_length=128, future_length=None, minibatch_size=50000)

	Compute 2D predictor (predictor whose value depends on properties of the most recent impulse).


	Parameters:

	
	predictor_name – str; name of predictor


	X – pandas table; input data


	first_obs – pandas Series or 1D numpy array; row indices in X of the start of the series associated with each regression target.


	last_obs – pandas Series or 1D numpy array; row indices in X of the most recent observation in the series associated with each regression target.


	minibatch_size – int; minibatch size for computing predictor, can help with memory footprint






	Returns:

	2-tuple; new predictor name, numpy array of predictor values










	
initialize_nns()

	Initialize a dictionary mapping ids to metadata for all NN components in this CDR model


	Returns:

	dict; mapping from NN str id to NN object storing metadata for that NN.










	
insert_impulses(impulses, irf_str, rangf=None)

	Insert impulses in impulse_ids into fixed effects and all random terms.


	Parameters:

	impulse_ids – list of str; impulse ID’s



	Returns:

	None










	
static irf_params(family)

	Return list of parameter names for a given IRF family.


	Parameters:

	family – str; name of IRF family



	Returns:

	list of str; parameter names










	
static is_LCG(family)

	Check whether a kernel is LCG.


	Parameters:

	family – str; name of IRF family



	Returns:

	bool; whether the kernel is LCG (linear combination of Gaussians)










	
pc_transform(n_pc, pointers=None)

	Get transformed formula with impulses replaced by principal components.


	Parameters:

	
	n_pc – int; number of principal components in transform.


	pointers – dict; map from source nodes to transformed nodes.






	Returns:

	list of IRFNode; tree forest representing current state of the transform.










	
process_ast(t, terms=None, has_intercept=None, ops=None, rangf=None, impulses_by_name=None, interactions_by_name=None, under_irf=False, under_interaction=False)

	Recursively process a node of the Python abstract syntax tree (AST) representation of the formula string and insert data into internal representation of model formula.


	Parameters:

	
	t – AST node.


	terms – list or None; CDR terms computed so far, or None if no CDR terms computed.


	has_intercept – dict; map from random grouping factors to boolean values representing whether that grouping factor has a random intercept. None is used as a key to refer to the population-level intercept.


	ops – list; names of ops computed so far, or None if no ops computed.


	rangf – str or None; name of rangf for random term currently being processed, or None if currently processing fixed effects portion of model.






	Returns:

	None










	
process_irf(t, input_irf, ops=None, rangf=None, nn_inputs=None, impulses_by_name=None, interactions_by_name=None)

	Process data from AST node representing part of an IRF definition and insert data into internal representation of the model.


	Parameters:

	
	t – AST node.


	input_irf – IRFNode, Impulse, InterationImpulse, or NNImpulse object; child IRF of current node


	ops – list of str, or None; ops applied to IRF. If None, no ops applied


	rangf – str or None; name of rangf for random term currently being processed, or None if currently processing fixed effects portion of model.


	nn_inputs – tuple or None; tuple of input impulses to neural network IRF, or None if not a neural network IRF.






	Returns:

	IRFNode object; the IRF node










	
re_transform(X)

	Get transformed formula with regex predictors expanded based on matches to the columns in X.


	Parameters:

	X – list of pandas tables; input data.



	Returns:

	Formula; transformed Formula object










	
remove_impulses(impulse_ids)

	Remove impulses in impulse_ids from the model (both fixed and random effects).


	Parameters:

	impulse_ids – list of str; impulse ID’s



	Returns:

	None










	
response_names()

	Get list of names modeled response variables.


	Returns:

	list of str; names modeled response variables.










	
responses()

	Get list of modeled response variables.


	Returns:

	list of Impulse; modeled response variables.










	
to_lmer_formula_string(z=False, correlated=True)

	Generate an lme4-style LMER model string representing the structure of the current CDR model.
Useful for 2-step analysis in which data are transformed using CDR, then fitted using LME.


	Parameters:

	
	z – bool; z-transform convolved predictors.


	correlated – bool; whether to use correlated random intercepts and slopes.






	Returns:

	str; the LMER formula string.










	
to_string(t=None)

	Stringify the formula, using t as the RHS.


	Parameters:

	t – IRFNode or None; IRF node to use as RHS. If None, uses root IRF associated with Formula instance.



	Returns:

	str; stringified formula.










	
unablate_impulses(impulse_ids)

	Insert impulses in impulse_ids into fixed effects (leaving random effects structure unchanged).


	Parameters:

	impulse_ids – list of str; impulse ID’s



	Returns:

	None














	
class cdr.formula.IRFNode(family=None, impulse=None, p=None, irfID=None, coefID=None, ops=None, fixed=True, rangf=None, nn_impulses=None, nn_config=None, impulses_as_inputs=True, inputs_to_add=None, inputs_to_drop=None, param_init=None, trainable=None, response_params_list=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Data structure representing a node in a CDR IRF tree.
For more information on how the CDR IRF structure is encoded as a tree, see the reference on CDR IRF trees.


	Parameters:

	
	family – str; name of IRF kernel family.


	impulse – Impulse object or None; the impulse if terminal, else None.


	p – IRFNode object or None; the parent IRF node, or None if no parent (parent nodes can be connected after initialization).


	irfID – str or None; string ID of node if applicable. If None, automatically-generated ID will discribe node’s family and structural position.


	coefID – str or None; string ID of coefficient if applicable. If None, automatically-generated ID will discribe node’s family and structural position. Only applicable to terminal nodes, so this property will not be used if the node is non-terminal.


	ops – list of str, or None; ops to apply to IRF node. If None, no ops.


	fixed – bool; Whether node exists in the model’s fixed effects structure.


	rangf – list of str, str, or None; names of any random grouping factors associated with the node.


	nn_impulses – tuple or None; tuple of input impulses to neural network IRF, or None if not a neural network IRF.


	nn_config – dict or None; dictionary of settings for NN IRF component.


	impulses_as_inputs – bool; whether to include impulses in input of a neural network IRF.


	inputs_to_add – list of Impulse/NNImpulse or None; list of impulses to add to input of neural network IRF.


	inputs_to_drop – list of Impulse/NNImpulse or None; list of impulses to remove from input of neural network IRF (keeping them in output).


	param_init – dict; map from parameter names to initial values, which will also be used as prior means.


	trainable – list of str, or None; trainable parameters at this node. If None, all parameters are trainable.


	response_params_list – list of 2-tuple of str, or None; Response distribution parameters modeled by this IRF, with each parameter represented as a pair (DIST_NAME, PARAM_NAME). DIST_NAME can be None, in which case the IRF will apply to any distribution parameter matching PARAM_NAME.









	
ablate_impulses(impulse_ids)

	Remove impulses in impulse_ids from fixed effects (retaining in any random effects).


	Parameters:

	impulse_ids – list of str; impulse ID’s



	Returns:

	None










	
add_child(t)

	Add child to this node in the IRF tree


	Parameters:

	t – IRFNode; child node.



	Returns:

	IRFNode; child node with updated parent.










	
add_interactions(response_interactions)

	Add a ResponseInteraction object (or list of them) to this node.


	Parameters:

	response_interaction – ResponseInteraction or list of ResponseInteraction; response interaction(s) to add



	Returns:

	None










	
add_rangf(rangf)

	Add random grouping factor name to this node.


	Parameters:

	rangf – str; random grouping factor name



	Returns:

	None










	
atomic_irf_by_family()

	Get map from IRF kernel family names to list of IDs of IRFNode instances belonging to that family.


	Returns:

	dict from str to list of str; IRF IDs by family.










	
atomic_irf_param_init_by_family()

	Get map from IRF kernel family names to maps from IRF IDs to maps from IRF parameter names to their initialization values.


	Returns:

	dict; parameter initialization maps by family.










	
atomic_irf_param_trainable_by_family()

	Get map from IRF kernel family names to maps from IRF IDs to lists of trainable parameters.


	Returns:

	dict; trainable parameter maps by family.










	
bases()

	Get the number of bases of node.


	Returns:

	int or None; number of bases of node, or None if node is not a spline.










	
categorical_transform(X, expansion_map=None)

	Generate transformed copy of node with categorical predictors in X expanded.
Recursive.
Returns a tree forest representing the current state of the transform.
When run from ROOT, should always return a length-1 list representing a single-tree forest, in which case the transformed tree is accessible as the 0th element.


	Parameters:

	
	X – list of pandas tables; input data.


	expansion_map – dict; Internal variable. Do not use.






	Returns:

	list of IRFNode; tree forest representing current state of the transform.










	
coef2impulse()

	Get map from coefficient IDs dominated by node to lists of corresponding impulses.


	Returns:

	dict; map from coefficient IDs to lists of corresponding impulses.










	
coef2terminal()

	Get map from coefficient IDs dominated by node to lists of corresponding terminal IRF nodes.


	Returns:

	dict; map from coefficient IDs to lists of corresponding terminal IRF nodes.










	
coef_by_rangf()

	Get map from random grouping factor names to associated coefficient IDs dominated by node.


	Returns:

	dict; map from random grouping factor names to associated coefficient IDs.










	
coef_id()

	Get coefficient ID for this node.


	Returns:

	str or None; coefficient ID, or None if non-terminal.










	
coef_names()

	Get list of names of coefficients dominated by node.


	Returns:

	list of str; names of coefficients dominated by node.










	
depth()

	Get depth of node in tree.


	Returns:

	int; depth










	
fixed_coef_names()

	Get list of names of fixed coefficients dominated by node.


	Returns:

	list of str; names of fixed coefficients dominated by node.










	
fixed_interaction_names()

	Get list of names of fixed interactions dominated by node.


	Returns:

	list of str; names of fixed interactions dominated by node.










	
formula_terms()

	Return data structure representing formula terms dominated by node, grouped by random grouping factor.
Key None represents the fixed portion of the model (no random grouping factor).


	Returns:

	dict; map from random grouping factors to data structure representing formula terms.
Data structure contains 2 fields, 'impulses' containing impulses and 'irf' containing IRF Nodes.










	
has_coefficient(rangf)

	Report whether rangf has any coefficients in this subtree


	Parameters:

	rangf – Random grouping factor



	Returns:

	bool: Whether rangf has any coefficients in this subtree










	
has_composed_irf()

	Check whether node dominates any IRF compositions.


	Returns:

	bool, whether node dominates any IRF compositions.










	
has_irf(rangf)

	Report whether rangf has any IRFs in this subtree


	Parameters:

	rangf – Random grouping factor



	Returns:

	bool: Whether rangf has any IRFs in this subtree










	
impulse2coef()

	Get map from impulses dominated by node to lists of corresponding coefficient IDs.


	Returns:

	dict; map from impulses to lists of corresponding coefficient IDs.










	
impulse2terminal()

	Get map from impulses dominated by node to lists of corresponding terminal IRF nodes.


	Returns:

	dict; map from impulses to lists of corresponding terminal IRF nodes.










	
impulse_names(include_interactions=False, include_nn=False, include_nn_inputs=True)

	Get list of names of impulses dominated by node.


	Parameters:

	
	include_interactions – bool; whether to return impulses defined by interaction terms.


	include_nn – bool; whether to return NN transformations of impulses.


	include_nn_inputs – bool; whether to return input impulses to NN transformations.






	Returns:

	list of str; names of impulses dominated by node.










	
impulse_set(include_interactions=False, include_nn=False, include_nn_inputs=True, out=None)

	Get set of impulses dominated by node.


	Parameters:

	
	include_interactions – bool; whether to return impulses defined by interaction terms.


	include_nn – bool; whether to return NN transformations of impulses.


	include_nn_inputs – bool; whether to return input impulses to NN transformations.








:param set or None; initial dictionary to modify.


	Returns:

	list of Impulse; impulses dominated by node.










	
impulses(include_interactions=False, include_nn=False, include_nn_inputs=True)

	Get alphabetically sorted list of impulses dominated by node.


	Parameters:

	
	include_interactions – bool; whether to return impulses defined by interaction terms.


	include_nn – bool; whether to return NN transformations of impulses.


	include_nn_inputs – bool; whether to return input impulses to NN transformations.






	Returns:

	list of Impulse; impulses dominated by node.










	
impulses_by_name(include_interactions=False, include_nn=False, include_nn_inputs=True)

	Get dictionary mapping names of impulses dominated by node to their corresponding impulses.


	Parameters:

	
	include_interactions – bool; whether to return impulses defined by interaction terms.


	include_nn – bool; whether to return NN transformations of impulses.


	include_nn_inputs – bool; whether to return input impulses to NN transformations.






	Returns:

	list of Impulse; impulses dominated by node.










	
impulses_from_response_interaction()

	Get list of any impulses from response interactions associated with this node.


	Returns:

	list of Impulse; impulses dominated by node.










	
interaction_by_rangf()

	Get map from random grouping factor names to associated interaction IDs dominated by node.


	Returns:

	dict; map from random grouping factor names to associated interaction IDs.










	
interaction_names()

	Get list of names of interactions dominated by node.


	Returns:

	list of str; names of interactions dominated by node.










	
interactions()

	Return list of all response interactions used in this subtree, sorted by name.


	Returns:

	list of ResponseInteraction










	
interactions2inputs()

	Get map from IDs of ResponseInteractions dominated by node to lists of IDs of their inputs.


	Returns:

	dict; map from IDs of ResponseInteractions nodes to lists of their inputs.










	
irf_by_rangf()

	Get map from random grouping factor names to IDs of associated IRF nodes dominated by node.


	Returns:

	dict; map from random grouping factor names to IDs of associated IRF nodes.










	
irf_id()

	Get IRF ID for this node.


	Returns:

	str or None; IRF ID, or None if terminal.










	
irf_to_formula(rangf=None)

	Generates a representation of this node’s impulse response kernel in formula string syntax


	Parameters:

	rangf – random grouping factor for which to generate the stringification (fixed effects if rangf==None).



	Returns:

	str; formula string representation of node










	
is_LCG()

	Check the non-parametric type of a node’s kernel, or return None if parametric.


	Parameters:

	family – str; name of IRF family



	Returns:

	str or None; name of kernel type if non-parametric, else ``None.










	
local_name()

	Get descriptive name for this node, ignoring its position in the IRF tree.


	Returns:

	str; name.










	
name()

	Get descriptive name for this node.


	Returns:

	str; name.










	
nns_by_key(nns_by_key=None)

	Get a dict mapping NN keys to objects associated with them.


	Parameters:

	keys – dict or None; dictionary to modify. Empty if None.



	Returns:

	dict; map from string keys to list of associated IRFNode and/or NNImpulse objects.










	
node_table()

	Get map from names to nodes of all nodes dominated by node (including self).


	Returns:

	dict; map from names to nodes of all nodes dominated by node.










	
nonparametric_coef_names()

	Get list of names of nonparametric coefficients dominated by node.
:return: list of str; names of spline coefficients dominated by node.






	
static pointers2namemmaps(p)

	Get a map from source to transformed IRF node names.


	Parameters:

	p – dict; map from source to transformed IRF nodes.



	Returns:

	dict; map from source to transformed IRF node names.










	
re_transform(X, expansion_map=None)

	Generate transformed copy of node with regex-matching predictors in X expanded.
Recursive.
Returns a tree forest representing the current state of the transform.
When run from ROOT, should always return a length-1 list representing a single-tree forest, in which case the transformed tree is accessible as the 0th element.


	Parameters:

	
	X – list of pandas tables; input data.


	expansion_map – dict; Internal variable. Do not use.






	Returns:

	list of IRFNode; tree forest representing current state of the transform.










	
remove_impulses(impulse_ids)

	Remove impulses in impulse_ids from the model (both fixed and random effects).


	Parameters:

	impulse_ids – list of str; impulse ID’s



	Returns:

	None










	
supports_non_causal()

	Check whether model contains only IRF kernels that lack the causality constraint t >= 0.


	Returns:

	bool: whether model contains only IRF kernels that lack the causality constraint t >= 0.










	
terminal()

	Check whether node is terminal.


	Returns:

	bool; whether node is terminal.










	
terminal2coef()

	Get map from IDs of terminal IRF nodes dominated by node to lists of corresponding coefficient IDs.


	Returns:

	dict; map from IDs of terminal IRF nodes to lists of corresponding coefficient IDs.










	
terminal2impulse()

	Get map from terminal IRF nodes dominated by node to lists of corresponding impulses.


	Returns:

	dict; map from terminal IRF nodes to lists of corresponding impulses.










	
terminal_names()

	Get list of names of terminal IRF nodes dominated by node.


	Returns:

	list of str; names of terminal IRF nodes dominated by node.










	
terminals()

	Get list of terminal IRF nodes dominated by node.


	Returns:

	list of IRFNode; terminal IRF nodes dominated by node.










	
terminals_by_name()

	Get dictionary mapping names of terminal IRF nodes dominated by node to their corresponding nodes.


	Returns:

	dict; map from node names to nodes










	
unablate_impulses(impulse_ids)

	Insert impulses in impulse_ids into fixed effects (leaving random effects structure unchanged).


	Parameters:

	impulse_ids – list of str; impulse ID’s



	Returns:

	None










	
unary_nonparametric_coef_names()

	Get list of names of non-parametric coefficients with no siblings dominated by node.
Because unary splines are non-parametric, their coefficients are fixed at 1.
Trainable coefficients are therefore perfectly confounded with the spline parameters.
Splines dominating multiple coefficients are excepted, since the same kernel shape must be scaled in different ways.


	Returns:

	list of str; names of unary spline coefficients dominated by node.














	
class cdr.formula.Impulse(name, ops=None, is_re=False)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Data structure representing an impulse in a CDR model.


	Parameters:

	
	name – str; name of impulse


	ops – list of str, or None; ops to apply to impulse. If None, no ops.


	is_re – bool; whether impulse is a regular expression search pattern









	
categorical(X)

	Checks whether impulse is categorical in a dataset


	Parameters:

	X – list pandas tables; data to to check.



	Returns:

	bool; True if impulse is categorical in X, False otherwise.










	
expand_categorical(X)

	Expand any categorical predictors in X into 1-hot columns.


	Parameters:

	X – list of pandas tables; input data



	Returns:

	2-tuple of pandas table, list of Impulse; expanded data, list of expanded Impulse objects










	
expand_re(X)

	Expand any regular expression predictors in X into a sequence of all matching columns.


	Parameters:

	X – list of pandas tables; input data



	Returns:

	list of Impulse; list of expanded Impulse objects










	
get_matcher()

	Return a compiled regex matcher to compare to data columns


	Returns:

	re object










	
is_nn_impulse()

	Type check for whether impulse represents an NN transformation of impulses.


	Returns:

	False










	
name()

	Get name of term.


	Returns:

	str; name.














	
class cdr.formula.ImpulseInteraction(impulses, ops=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Data structure representing an interaction of impulse-aligned variables (impulses) in a CDR model.


	Parameters:

	
	impulses – list of Impulse; impulses to interact.


	ops – list of str, or None; ops to apply to interaction. If None, no ops.









	
expand_categorical(X)

	Expand any categorical predictors in X into 1-hot columns.


	Parameters:

	X – list of pandas tables; input data.



	Returns:

	3-tuple of pandas table, list of ImpulseInteraction, list of list of Impulse; expanded data, list of expanded ImpulseInteraction objects, list of lists of expanded Impulse objects, one list for each interaction.










	
expand_re(X)

	Expand any regular expression predictors in X into a sequence of all matching columns.


	Parameters:

	X – list of pandas tables; input data



	Returns:

	2-tuple of list of ImpulseInteraction, list of list of Impulse; list of expanded ImpulseInteraction objects, list of lists of expanded Impulse objects, one list for each interaction.










	
impulses()

	Get list of impulses dominated by interaction.


	Returns:

	list of Impulse; impulses dominated by interaction.










	
is_nn_impulse()

	Type check for whether impulse represents an NN transformation of impulses.


	Returns:

	False










	
name()

	Get name of interation impulse.


	Returns:

	str; name.














	
class cdr.formula.NN(nodes, nn_type, rangf=None, nn_key=None, nn_config=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Data structure representing a neural network within a CDR model.


	Parameters:

	
	nodes – list of IRFNode, and/or NNImpulse objects; nodes associated with this NN


	nn_type – str; name of NN type ('irf' or 'impulse').


	rangf – str or list of str; random grouping factors for which to build random effects for this NN.


	nn_type – str or None; key uniquely identifying this NN node (constructed automatically if None).


	nn_config – dict or None; map of NN config fields to their values for this NN node.









	
all_impulse_names()

	Get list of all impulse names associated with this NN component.


	Returns:

	list of str: All impulse names associated with this NN component.










	
input_impulse_names()

	Get list of input impulse names associated with this NN component.


	Returns:

	list of str: Input impulse names associated with this NN component.










	
name()

	Get name of NN.


	Returns:

	str; name.










	
output_impulse_names()

	Get list of output impulse names associated with this NN component (NN IRF only).


	Returns:

	list of str: Output impulse names associated with this NN component.














	
class cdr.formula.NNImpulse(impulses, impulses_as_inputs=True, inputs_to_add=None, inputs_to_drop=None, nn_config=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Data structure representing a feedforward neural network transform of one or more impulses in a CDR model.


	Parameters:

	
	impulses – list of Impulse; impulses to transform.


	impulses_as_inputs – bool; whether to include impulses as NN inputs.


	inputs_to_add – list of Impulse or None; extra impulses to add to NN input.


	inputs_to_drop – list of Impulse or None;  output impulses to drop from NN input.


	nn_config – dict or None; map of NN config fields to their values for this NN node.









	
expand_categorical(X)

	Expand any categorical predictors in X into 1-hot columns.


	Parameters:

	X – list of pandas tables; input data.



	Returns:

	3-tuple of pandas table, list of NNImpulse, list of list of Impulse; expanded data, list of expanded NNImpulse objects, list of lists of expanded Impulse objects, one list for each interaction.










	
expand_re(X)

	Expand any regular expression predictors in X into a sequence of all matching columns.


	Parameters:

	X – list of pandas tables; input data



	Returns:

	2-tuple of list of ImpulseInteraction, list of list of Impulse; list of expanded ImpulseInteraction objects, list of lists of expanded Impulse objects, one list for each interaction.










	
impulses()

	Get list of output impulses dominated by NN.


	Returns:

	list of Impulse; impulses dominated by NN.










	
is_nn_impulse()

	Type check for whether impulse represents an NN transformation of impulses.


	Returns:

	True










	
name()

	Get name of NN impulse.


	Returns:

	str; name.














	
class cdr.formula.ResponseInteraction(responses, rangf=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Data structure representing an interaction of response-aligned variables (containing at least one IRF-convolved impulse) in a CDR model.


	Parameters:

	
	responses – list of terminal IRFNode, Impulse, and/or ImpulseInteraction objects; responses to interact.


	rangf – str or list of str; random grouping factors for which to build random effects for this interaction.









	
add_rangf(rangf)

	Add random grouping factor name to this interaction.


	Parameters:

	rangf – str; random grouping factor name



	Returns:

	None










	
contains_member(x)

	Check if object is a member of the set of responses belonging to this interaction


	Parameters:

	x – IRFNode, Impulse, and/or ImpulseInteraction object; object to check.



	Returns:

	bool; whether x is a member of the set of responses










	
dirac_delta_responses()

	Get list of response-aligned Dirac delta variables dominated by interaction.


	Returns:

	list of Impulse and/or ImpulseInteraction objects; Dirac delta variables dominated by interaction.










	
irf_responses()

	Get list of IRFs dominated by interaction.


	Returns:

	list of IRFNode objects; terminal IRFs dominated by interaction.










	
name()

	Get name of interation impulse.


	Returns:

	str; name.










	
nn_impulse_responses()

	Get list of NN impulse terms dominated by interaction.


	Returns:

	list of NNImpulse objects; NN impulse terms dominated by interaction.










	
replace(old, new)

	Replace an old input with a new one


	Parameters:

	
	old – IRFNode, Impulse, and/or ImpulseInteraction object; response to remove.


	new – IRFNode, Impulse, and/or ImpulseInteraction object; response to add.






	Returns:

	None










	
responses()

	Get list of variables dominated by interaction.


	Returns:

	list of IRFNode, Impulse, and/or ImpulseInteraction objects; impulses dominated by interaction.














	
cdr.formula.pythonize_string(s)

	Convert string to valid python variable name


	Parameters:

	s – str; source string



	Returns:

	str; pythonized string










	
cdr.formula.standardize_formula_string(s)

	Standardize a formula string, removing notational variation.
IRF specifications C(...) are sorted alphabetically by the IRF call name e.g. Gamma().
The order of impulses within an IRF specification is preserved.


	Parameters:

	s – str; the formula string to be standardized



	Returns:

	str; standardization of s











cdr.io module


	
cdr.io.read_tabular_data(X_paths, Y_paths, series_ids, categorical_columns=None, sep=' ', verbose=True)

	Read impulse and response data into pandas dataframes and perform basic pre-processing.


	Parameters:

	
	X_paths – str or list of str; path(s) to impulse (predictor) data (multiple tables are concatenated). Each path may also be a ;-delimited list of paths to files containing predictors with different timestamps, where the predictors in each file are all timestamped with respect to the same reference point.


	Y_paths – str or list of str; path(s) to response data (multiple tables are concatenated). Each path may also be a ;-delimited list of paths to files containing different response variables with different timestamps, where the response variables in each file are all timestamped with respect to the same reference point.


	series_ids – list of str; column names whose jointly unique values define unique time series.


	categorical_columns – list of str; column names that should be treated as categorical.


	sep – str; string representation of field delimiter in input data.


	verbose – bool; whether to log progress to stderr.






	Returns:

	2-tuple of list(pandas DataFrame); (impulse data, response data). X and Y each have one element for each dataset in X_paths/Y_paths, each containing the column-wise concatenation of all column files in the path.











cdr.kwargs module


	
class cdr.kwargs.Kwarg(key, default_value, dtypes, descr, aliases=None, default_value_cdrnn='same', suppress=False)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Data structure for storing keyword arguments and their docstrings.


	Parameters:

	
	key – str; Key


	default_value – Any; Default value


	dtypes – list or class; List of classes or single class. Members can also be specific required values, either None or values of type str.


	descr – str; Description of kwarg


	default_value_cdrnn – Any; Default value for CDRNN if distinct from CDR. If 'same', CDRNN uses default_value.


	suppress – bool; Whether to print documentation for this kwarg. Useful for hiding deprecated or little-used kwargs in order to simplify autodoc output.









	
dtypes_str()

	String representation of dtypes permitted for kwarg.


	Returns:

	str; dtypes string.










	
get_type_name(x)

	String representation of name of a dtype


	Parameters:

	x – dtype; the dtype to name.



	Returns:

	str; name of dtype.










	
in_settings(settings)

	Check whether kwarg is specified in a settings object parsed from a config file.


	Parameters:

	settings – settings from a ConfigParser object.



	Returns:

	bool; whether kwarg is found in settings.










	
kwarg_from_config(settings, is_cdrnn=False)

	Given a settings object parsed from a config file, return value of kwarg cast to appropriate dtype.
If missing from settings, return default.


	Parameters:

	
	settings – settings from a ConfigParser object or dict.


	is_cdrnn – bool; whether this is for a CDRNN model.






	Returns:

	value of kwarg










	
static type_comparator(a, b)

	Types precede strings, which precede None


	Parameters:

	
	a – First element


	b – Second element






	Returns:

	-1, 0, or 1, depending on outcome of comparison














	
cdr.kwargs.cdr_kwarg_docstring()

	Generate docstring snippet summarizing all CDR kwargs, dtypes, and defaults.


	Returns:

	str; docstring snippet










	
cdr.kwargs.docstring_from_kwarg(kwarg)

	Generate docstring from CDR keyword argument object.


	Parameters:

	kwarg – Keyword argument object.



	Returns:

	str; docstring.










	
cdr.kwargs.plot_kwarg_docstring()

	Generate docstring snippet summarizing all plotting kwargs, dtypes, and defaults.


	Returns:

	str; docstring snippet











cdr.model module



cdr.opt module



cdr.plot module


	
cdr.plot.plot_heatmap(m, row_names, col_names, outdir='.', filename='eigenvectors.png', plot_x_inches=7, plot_y_inches=5, cmap='Blues')

	Plot a heatmap. Used in CDR for visualizing eigenvector matrices in principal components models.


	Parameters:

	
	m – 2D numpy array; source data for plot.


	row_names – list of str; row names.


	col_names – list of str; column names.


	outdir – str; output directory.


	filename – str; filename.


	plot_x_inches – float; width of plot in inches.


	plot_y_inches – float; height of plot in inches.


	cmap – str; name of matplotlib cmap object (determines colors of plotted IRF).






	Returns:

	None










	
cdr.plot.plot_irf(plot_x, plot_y, irf_names, lq=None, uq=None, density=None, sort_names=True, prop_cycle_length=None, prop_cycle_map=None, outdir='.', filename='irf_plot.png', irf_name_map=None, plot_x_inches=6, plot_y_inches=4, ylim=None, cmap='gist_rainbow', legend=True, xlab=None, ylab=None, use_line_markers=False, use_grid=True, transparent_background=False, dpi=300, dump_source=False)

	Plot impulse response functions.


	Parameters:

	
	plot_x – numpy array with shape (T,1); time points for which to plot the response. For example, if the plots contain 1000 points from 0s to 10s, plot_x could be generated as np.linspace(0, 10, 1000).


	plot_y – numpy array with shape (T, N); response of each IRF at each time point.


	irf_names – list of str; CDR ID’s of IRFs in the same order as they appear in axis 1 of plot_y.


	lq – numpy array with shape (T, N), or None; lower bound of credible interval for each time point. If None, no credible interval will be plotted.


	uq – numpy array with shape (T, N), or None; upper bound of credible interval for each time point. If None, no credible interval will be plotted.


	sort_names – bool; alphabetically sort IRF names.


	prop_cycle_length – int or None; Length of plotting properties cycle (defines step size in the color map). If None, inferred from irf_names.


	prop_cycle_map – list of int, or None; Integer indices to use in the properties cycle for each entry in irf_names. If None, indices are automatically assigned.


	outdir – str; output directory.


	filename – str; filename.


	irf_name_map – dict of str to str; map from CDR IRF ID’s to more readable names to appear in legend. Any plotted IRF whose ID is not found in irf_name_map will be represented with the CDR IRF ID.


	plot_x_inches – float; width of plot in inches.


	plot_y_inches – float; height of plot in inches.


	ylim – 2-element tuple or list; (lower_bound, upper_bound) to use for y axis. If None, automatically inferred.


	cmap – str; name of matplotlib cmap object (determines colors of plotted IRF).


	legend – bool; include a legend.


	xlab – str or None; x-axis label. If None, no label.


	ylab – str or None; y-axis label. If None, no label.


	use_line_markers – bool; add markers to IRF lines.


	use_grid – bool; whether to show a background grid.


	transparent_background – bool; use a transparent background. If False, uses a white background.


	dpi – int; dots per inch.


	dump_source – bool; Whether to dump the plot source array to a csv file.






	Returns:

	None










	
cdr.plot.plot_irf_as_heatmap(plot_x, plot_y, irf_names, sort_names=True, outdir='.', filename='irf_hm.png', irf_name_map=None, plot_x_inches=6, plot_y_inches=4, ylim=None, cmap='seismic', xlab=None, ylab=None, transparent_background=False, dpi=300, dump_source=False)

	Plot impulse response functions as a heatmap.


	Parameters:

	
	plot_x – numpy array with shape (T,1); time points for which to plot the response. For example, if the plots contain 1000 points from 0s to 10s, plot_x could be generated as np.linspace(0, 10, 1000).


	plot_y – numpy array with shape (T, N); response of each IRF at each time point.


	irf_names – list of str; CDR ID’s of IRFs in the same order as they appear in axis 1 of plot_y.


	sort_names – bool; alphabetically sort IRF names.


	outdir – str; output directory.


	filename – str; filename.


	irf_name_map – dict of str to str; map from CDR IRF ID’s to more readable names to appear in legend. Any plotted IRF whose ID is not found in irf_name_map will be represented with the CDR IRF ID.


	plot_x_inches – float; width of plot in inches.


	plot_y_inches – float; height of plot in inches.


	ylim – 2-element tuple or list; (lower_bound, upper_bound) to use for y axis. If None, automatically inferred.


	cmap – str; name of matplotlib cmap object (determines colors of plotted IRF).


	xlab – str or None; x-axis label. If None, no label.


	ylab – str or None; y-axis label. If None, no label.


	transparent_background – bool; use a transparent background. If False, uses a white background.


	dpi – int; dots per inch.


	dump_source – bool; Whether to dump the plot source array to a csv file.






	Returns:

	None










	
cdr.plot.plot_qq(theoretical, actual, actual_color='royalblue', expected_color='firebrick', outdir='.', filename='qq_plot.png', plot_x_inches=6, plot_y_inches=4, legend=True, xlab='Theoretical', ylab='Empirical', ticks=True, as_lines=False, transparent_background=False, dpi=300)

	Generate quantile-quantile plot.


	Parameters:

	
	theoretical – numpy array with shape (T,); theoretical error quantiles.


	actual – numpy array with shape (T,); empirical errors.


	actual_color – str; color for actual values.


	expected_color – str; color for expected values.


	outdir – str; output directory.


	filename – str; filename.


	plot_x_inches – float; width of plot in inches.


	plot_y_inches – float; height of plot in inches.


	legend – bool; include a legend.


	xlab – str or None; x-axis label. If None, no label.


	ylab – str or None; y-axis label. If None, no label.


	as_lines – bool; render QQ plot using lines. Otherwise, use points.


	transparent_background – bool; use a transparent background. If False, uses a white background.


	dpi – int; dots per inch.






	Returns:

	None










	
cdr.plot.plot_surface(x, y, z, lq=None, uq=None, density=None, bounds_as_surface=False, outdir='.', filename='surface.png', irf_name_map=None, plot_x_inches=6, plot_y_inches=4, xlim=None, ylim=None, zlim=None, plot_type='wireframe', cmap='coolwarm', xlab=None, ylab=None, zlab='Response', title=None, transparent_background=False, dpi=300, dump_source=False)

	Plot an IRF or interaction surface.


	Parameters:

	
	x – numpy array with shape (M,N); x locations for each plot point, copied N times.


	y – numpy array with shape (M,N); y locations for each plot point, copied M times.


	z – numpy array with shape (M,N); z locations for each plot point.


	lq – numpy array with shape (M,N), or None; lower bound of credible interval for each plot point. If None, no credible interval will be plotted.


	uq – numpy array with shape (M,N), or None; upper bound of credible interval for each plot point. If None, no credible interval will be plotted.


	bounds_as_surface – bool; whether to plot interval bounds using additional surfaces. If False, bounds are plotted with vertical error bars instead. Ignored if lq, uq are None.


	outdir – str; output directory.


	filename – str; filename.


	irf_name_map – dict of str to str; map from CDR IRF ID’s to more readable names to appear in legend. Any plotted IRF whose ID is not found in irf_name_map will be represented with the CDR IRF ID.


	plot_x_inches – float; width of plot in inches.


	plot_y_inches – float; height of plot in inches.


	xlim – 2-element tuple or list or None; (lower_bound, upper_bound) to use for x axis. If None, automatically inferred.


	ylim – 2-element tuple or list or None; (lower_bound, upper_bound) to use for y axis. If None, automatically inferred.


	zlim – 2-element tuple or list or None; (lower_bound, upper_bound) to use for z axis. If None, automatically inferred.


	plot_type – str; name of plot type to generate. One of ["contour", "surf", "trisurf"].


	cmap – str; name of matplotlib cmap object (determines colors of plotted IRF).


	legend – bool; include a legend.


	xlab – str or None; x-axis label. If None, no label.


	ylab – str or None; y-axis label. If None, no label.


	zlab – str or None; z-axis label. If None, no label.


	use_line_markers – bool; add markers to IRF lines.


	transparent_background – bool; use a transparent background. If False, uses a white background.


	dpi – int; dots per inch.


	dump_source – bool; Whether to dump the plot source array to a csv file.






	Returns:

	None











cdr.signif module


	
cdr.signif.correlation_test(y, x1, x2, nested=False, verbose=True)

	Perform a parametric test of difference in correlation with observations between two prediction vectors, based on Steiger (1980).


	Parameters:

	
	y – numpy vector; observation vector.


	x1 – numpy vector; first prediction vector.


	x2 – numpy vector; second prediction vector.


	nested – bool; assume that the second model is nested within the first.


	verbose – bool; report progress logs to standard error.






	Returns:

	










	
cdr.signif.permutation_test(a, b, n_iter=10000, n_tails=2, mode='loss', agg='mean', nested=False, verbose=True)

	Perform a paired permutation test for significance.


	Parameters:

	
	a – numpy array; first error/loss/prediction matrix, shape (n_item, n_model).


	b – numpy array; second error/loss/prediction matrix, shape (n_item, n_model).


	n_iter – int; number of resampling iterations.


	n_tails – int; number of tails.


	mode – str; one of ["mse", "loglik"], the type of error used (SE’s are averaged while loglik’s are summed).


	agg – str; aggregation function over ensemble components. E.g., 'mean', 'median', 'min', 'max'.


	nested – bool; assume that the second model is nested within the first.


	verbose – bool; report progress logs to standard error.






	Returns:

	











cdr.synth module


	
class cdr.synth.SyntheticModel(n_pred, irf_name, irf_params=None, coefs=None, fn=None, interactions=False, ranef_range=None, n_ranef_levels=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A data structure representing a synthetic “true” model for empirical validation of CDR fits.
Contains a randomly generated set of IRFs that can be used to convolve data, and provides methods
for sampling data with particular structure and convolving it with the true IRFs in order to generate
a response vector.


	Parameters:

	
	n_pred – int; Number of predictors in the synthetic model.


	irf_name – str; Name of IRF kernel to use. One of ['Exp', 'Normal', 'Gamma', 'ShiftedGamma'].


	irf_params – dict or None; Dictionary of IRF parameters to use, with parameter names as keys and numeric arrays as values. Values must each have n_pred cells. If None, parameter values will be randomly sampled.


	coefs – numpy array or None; Vector of coefficients to use, where len(coefs) == n_pred. If None, coefficients will be randomly sampled.


	fn – str or None; Effect shape to use. One of ['quadratic', 'exp', 'logmod', 'linear']. If ``None, linear effects.


	interactions – bool; Whether there are randomly sampled pairwise interactions (same bounds as those used for coefs).


	ranef_range – float or None; Maximum magnitude of simulated random effects. If 0 or None, no random effects.


	n_ranef_levels – int or None; Number of random effects levels. If 0 or None, no random effects.









	
convolve(X, t_X, t_y, history_length=None, err_sd=None, allow_instantaneous=True, ranef_level=None, verbose=True)

	Convolve data using the model’s IRFs.


	Parameters:

	
	X – numpy array; 2-D array of predictors.


	t_X – numpy array; 1-D vector of predictor timestamps.


	t_y – numpy array; 1-D vector of response timestamps.


	history_length – int or None; Drop preceding events more than history_length steps into the past. If None, no history clipping.


	err_sd – float or None; Standard deviation of Gaussian noise to inject into responses. If None, use the empirical standard deviation of the response vector.


	allow_instantaneous – bool; Whether to compute responses when t==0.


	ranef_level – str or None; Random effects level to use (or None to use population-level effect)


	verbose – bool; Verbosity.






	Returns:

	(2-D numpy array, 1-D numpy array); Matrix of convolved predictors, vector of responses










	
convolve_v2(X, t_X, t_y, err_sd=None, allow_instantaneous=True, verbose=True)

	Convolve data using the model’s IRFs. Alternate memory-intensive implementation that is faster for small arrays
but can exhaust resources for large ones.


	Parameters:

	
	X – numpy array; 2-D array of predictors.


	t_X – numpy array; 1-D vector of predictor timestamps.


	t_y – numpy array; 1-D vector of response timestamps.


	err_sd – float; Standard deviation of Gaussian noise to inject into responses.


	allow_instantaneous – bool; Whether to compute responses when t==0.


	verbose – bool; Verbosity.






	Returns:

	(2-D numpy array, 1-D numpy array); Matrix of convolved predictors, vector of responses










	
get_curves(n_time_units=None, n_time_points=None, ranef_level=None)

	Extract response curves as an array.


	Parameters:

	
	n_time_units – float; Number of units of time over which to extract curves.


	n_time_points – int; Number of samples to extract for each curve (resolution of curve)


	ranef_level – str or None; Random effects level to use (or None to use population-level effect)






	Returns:

	numpy array; 2-D numpy array with shape [T, K], where T is n_time_points and K is the number of predictors in the model.










	
irf(x, coefs=False, ranef_level=None)

	Computes the values of the model’s IRFs elementwise over a vector of timepoints.


	Parameters:

	
	x – numpy array; 1-D array with shape [N] containing timepoints at which to query the IRFs.


	coefs – bool; Whether to rescale responses by coefficients


	ranef_level – str or None; Random effects level to use (or None to use population-level effect)






	Returns:

	numpy array; 2-D array with shape [N, K] containing values of the model’s K IRFs evaluated at the timepoints in x.










	
plot_irf(n_time_units=None, n_time_points=None, dir='.', filename='synth_irf.png', plot_x_inches=6, plot_y_inches=4, cmap='gist_rainbow', legend=False, xlab=None, ylab=None, use_line_markers=False, transparent_background=False)

	Plot impulse response functions.


	Parameters:

	
	n_time_units – float; number if time units to use for plotting.


	n_time_points – int; number of points to use for plotting.


	dir – str; output directory.


	filename – str; filename.


	plot_x_inches – float; width of plot in inches.


	plot_y_inches – float; height of plot in inches.


	cmap – str; name of matplotlib cmap object (determines colors of plotted IRF).


	legend – bool; include a legend.


	xlab – str or None; x-axis label. If None, no label.


	ylab – str or None; y-axis label. If None, no label.


	use_line_markers – bool; add markers to IRF lines.


	transparent_background – bool; use a transparent background. If False, uses a white background.






	Returns:

	None










	
sample_data(m, n=None, X_interval=None, y_interval=None, rho=None, align_X_y=True)

	Samples synthetic predictors and time vectors


	Parameters:

	
	m – int; Number of predictors.


	n – int; Number of response query points.


	X_interval – str, float, list, tuple, or None; Predictor interval model. If None, predictor offsets are randomly sampled from an exponential distribution with parameter 1. If float, predictor offsets are evenly spaced with interval X_interval. If list or tuple, the first element is the name of a scipy distribution to use for sampling offsets, and all remaining elements are positional arguments to that distribution.


	y_interval – str, float, list, tuple, or None; Response interval model. If None, response offsets are randomly sampled from an exponential distribution with parameter 1. If float, response offsets are evenly spaced with interval y_interval. If list or tuple, the first element is the name of a scipy distribution to use for sampling offsets, and all remaining elements are positional arguments to that distribution.


	rho – float; Level of pairwise correlation between predictors.


	align_X_y – bool; Whether predictors and responses are required to be sampled at the same points in time.






	Returns:

	(2-D numpy array, 1-D numpy array, 1-D numpy array); Matrix of predictors, vector of predictor timestamps, vector of response timestamps















cdr.util module


	
cdr.util.filter_models(names, filters=None, cdr_only=False)

	Return models contained in names that are permitted by filters, preserving order in which filters were matched.
Filters can be ordinary strings, regular expression objects, or string representations of regular expressions.
For a regex filter to be considered a match, the expression must entirely match the name.
If filters is zero-length, returns names.


	Parameters:

	
	names – list of str; pool of model names to filter.


	filters – list of {str, SRE_Pattern} or None; filters to apply in order. If None, no additional filters.


	cdr_only – bool; if True, only returns CDR models. If False, returns all models admitted by filters.






	Returns:

	list of str; names in names that pass at least one filter, or all of names if no filters are applied.










	
cdr.util.filter_names(names, filters)

	Return elements of names permitted by filters, preserving order in which filters were matched.
Filters can be ordinary strings, regular expression objects, or string representations of regular expressions.
For a regex filter to be considered a match, the expression must entirely match the name.


	Parameters:

	
	names – list of str; pool of names to filter.


	filters – list of {str, SRE_Pattern}; filters to apply in order






	Returns:

	list of str; names in names that pass at least one filter










	
cdr.util.get_random_permutation(n)

	Draw a random permutation of integers 0 to n.
Used to shuffle arrays of length n.
For example, a permutation and its inverse can be generated by calling p, p_inv = get_random_permutation(n).
To randomly shuffle an n-dimensional vector x, call x[p].
To un-shuffle x after it has already been shuffled, call x[p_inv].


	Parameters:

	n – maximum value



	Returns:

	2-tuple of numpy arrays; the permutation and its inverse










	
cdr.util.load_cdr(dir_path, suffix='')

	Convenience method for reconstructing a saved CDR object. First loads in metadata from m.obj, then uses
that metadata to construct the computation graph. Then, if saved weights are found, these are loaded into the
graph.


	Parameters:

	
	dir_path – Path to directory containing the CDR checkpoint files.


	suffix – str; file suffix.






	Returns:

	The loaded CDR instance.










	
cdr.util.mae(true, preds)

	Compute mean absolute error (MAE).


	Parameters:

	
	true – True values


	preds – Predicted values






	Returns:

	float; MAE










	
cdr.util.mse(true, preds)

	Compute mean squared error (MSE).


	Parameters:

	
	true – True values


	preds – Predicted values






	Returns:

	float; MSE










	
cdr.util.names2ix(names, l, dtype=<class 'numpy.int32'>)

	Generate 1D numpy array of indices in l corresponding to names in names


	Parameters:

	
	names – list of str; names to look up in l


	l – list of str; list of names from which to extract indices


	dtype – numpy dtype object; return dtype






	Returns:

	numpy array; indices of names in l










	
cdr.util.nested(model_name_1, model_name_2)

	Check whether two CDR models are nested with 1 degree of freedom


	Parameters:

	
	model_name_1 – str; name of first model


	model_name_2 – str; name of second model






	Returns:

	bool; True if models are nested with 1 degree of freedom, False otherwise










	
cdr.util.pca(X, n_dim=None, dtype=<class 'numpy.float32'>)

	Perform principal components analysis on a data table.


	Parameters:

	
	X – numpy or pandas array; the input data


	n_dim – int or None; maximum number of principal components. If None, all components are retained.


	dtype – numpy dtype; return dtype






	Returns:

	5-tuple of numpy arrays; transformed data, eigenvectors, eigenvalues, input means, and input standard deviations










	
cdr.util.percent_variance_explained(true, preds)

	Compute percent variance explained.


	Parameters:

	
	true – True values


	preds – Predicted values






	Returns:

	float; percent variance explained










	
cdr.util.reg_name(string)

	Standardize a variable name for regularization


	Parameters:

	string – str; input string



	Returns:

	str; transformed string










	
cdr.util.sn(string)

	Compute a valid scope name version of a string.


	Parameters:

	string – str; input string



	Returns:

	str; transformed string













            

          

      

      

    

  

    
      
          
            
  
CDR Visualizer

The CDR Visualizer supports interactive plotting of CDR estimates in your web browser.
To run it, you will first need to install the dash library using either Anaconda or pip, e.g.:

pip install dash





Once dash is installed, you can visualize any trained model by running:

python -m cdr.viz.app <PATH/TO/CONFIG> -m <MODEL_NAME>





where <PATH/TO/CONFIG> and <MODEL_NAME> are respectively replaced by the path to your config file and the name specified in the config for the model you want to visualize.
CDR Visualizer is a useful complement to the static plotting tools provided by cdr.bin.plot because it permits flexible, fast exploration of the solution space recovered by the model.
This tool is currently in early development and many planned features are yet to be implemented.
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